scispace - formally typeset
Journal ArticleDOI

Field Programmable Stateful Logic Array

Reads0
Chats0
TLDR
This paper proposes a novel stateful logic pipeline architecture based on memristive switches, and addresses some of the issues, in particular logic representation using OR-inverter graphs, two-level optimization synthesis strategy, data synchronization with data forwarding, stall-free pipelined finite state machines, and constraints for synthesis and mapping onto the fabric.
Abstract
Recently, researchers have demonstrated that memristive switches can be used to implement logic and latches as well as memory and programmable interconnects. In this paper, we propose a novel stateful logic pipeline architecture based on memristive switches. The proposed architecture mapped to the field programmable nanowire interconnect fabric produces a field programmable stateful logic array, in which general-purpose computation functions can be implemented by configuring only nonvolatile nanowire crossbar switches. CMOS control switches are used to isolate stateful logic units so that multiple operations can be executed in parallel. Since basic operation of the stateful logic, namely, material implication, cannot fan out, a new basic AND operation which can duplicate output is proposed. The basic unit of the proposed architecture is designed to execute multiple basic operations concurrently in a step so that each basic unit implements a large fan-in OR or NOR gate. The fine-grain ultradeep constant-throughput pipeline properties pose new design automation problems. We address some of the issues, in particular logic representation using OR-inverter graphs, two-level optimization synthesis strategy, data synchronization with data forwarding, stall-free pipelined finite state machines, and constraints for synthesis and mapping onto the fabric.

read more

Citations
More filters
Journal ArticleDOI

MAGIC—Memristor-Aided Logic

TL;DR: In this brief, a memristor-only logic family, i.e., memristar-aided logic (MAGIC), is presented, and in each MAGIC logic gate, memristors serve as an input with previously stored data, and an additional Memristor serves as an output.
Journal ArticleDOI

If it’s pinched it’s a memristor

TL;DR: In this paper, the first four elementary nonlinear 2-terminal circuit elements, namely, the resistor, the capacitor, the inductor, and the memristor, are given a circuit-theoretic foundation.

If It's Pinched It's a Memristor.

TL;DR: This chapter gives a circuit-theoretic foundation for the first four elementary nonlinear 2-terminal circuit elements, namely, the resistor, the capacitor, the inductor, and the memristor.

The Fourth Element.

Leon O. Chua
TL;DR: This tutorial clarifies the axiomatic definition of (v(α); i(β)) circuit elements via a lookup table dubbed an A-pad, of admissible (v; i) signals measured via Gedanken probing circuits.
References
More filters
Book

Computer Architecture: A Quantitative Approach

TL;DR: This best-selling title, considered for over a decade to be essential reading for every serious student and practitioner of computer design, has been updated throughout to address the most important trends facing computer designers today.
Journal ArticleDOI

The missing memristor found

TL;DR: It is shown, using a simple analytical example, that memristance arises naturally in nanoscale systems in which solid-state electronic and ionic transport are coupled under an external bias voltage.
Journal ArticleDOI

Memristor-The missing circuit element

TL;DR: In this article, the memristor is introduced as the fourth basic circuit element and an electromagnetic field interpretation of this relationship in terms of a quasi-static expansion of Maxwell's equations is presented.
Journal ArticleDOI

Growth of nanowire superlattice structures for nanoscale photonics and electronics.

TL;DR: Single-nanowire photoluminescent, electrical transport and electroluminescence measurements show the unique photonic and electronic properties of these nanowire superlattices, and suggest potential applications ranging from nano-barcodes to polarized nanoscale LEDs.
Journal ArticleDOI

Memristive devices and systems

TL;DR: In this article, a broad generalization of memristors to an interesting class of nonlinear dynamical systems called memristive systems is introduced, which are unconventional in the sense that while they behave like resistive devices, they can be endowed with a rather exotic variety of dynamic characteristics.
Related Papers (5)