scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Filtering the reality: Functional dissociation of lateral and medial pain systems during sleep in humans

TL;DR: While the lateral operculo‐insular system subserving sensory analysis of somatic stimuli remained active during paradoxical‐REM sleep, mid‐anterior cingulate processes related to orienting and avoidance behavior were suppressed, explaining why nociceptive stimuli can be either neglected or incorporated into dreams without awakening the subject.
Abstract: Behavioral reactions to sensory stimuli during sleep are scarce despite preservation of sizeable cortical responses. To further understand such dissociation, we recorded intracortical field potentials to painful laser pulses in humans during waking and all-night sleep. Recordings were obtained from the three cortical structures receiving 95% of the spinothalamic cortical input in primates, namely the parietal operculum, posterior insula, and mid-anterior cingulate cortex. The dynamics of responses during sleep differed among cortical sites. In sleep Stage 2, evoked potential amplitudes were similarly attenuated relative to waking in all three cortical regions. During paradoxical, or rapid eye movements (REM), sleep, opercular and insular potentials remained stable in comparison with Stage 2, whereas the responses from mid-anterior cingulate abated drastically, and decreasing below background noise in half of the subjects. Thus, while the lateral operculo-insular system subserving sensory analysis of somatic stimuli remained active during paradoxical-REM sleep, mid-anterior cingulate processes related to orienting and avoidance behavior were suppressed. Dissociation between sensory and orienting-motor networks might explain why nociceptive stimuli can be either neglected or incorporated into dreams without awakening the subject.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
01 Dec 2013-Pain
TL;DR: The pain matrix is conceptualised here as a fluid system composed of several interacting networks, including posterior parietal, prefrontal and anterior insular areas, which ensures the bodily specificity of pain and is the only one whose destruction entails selective pain deficits.
Abstract: The pain matrix is conceptualised here as a fluid system composed of several interacting networks. A nociceptive matrix receiving spinothalamic projections (mainly posterior operculoinsular areas) ensures the bodily specificity of pain and is the only one whose destruction entails selective pain deficits. Transition from cortical nociception to conscious pain relies on a second-order network, including posterior parietal, prefrontal and anterior insular areas. Second-order regions are not nociceptive-specific; focal stimulation does not evoke pain, and focal destruction does not produce analgesia, but their joint activation is necessary for conscious perception, attentional modulation and control of vegetative reactions. The ensuing pain experience can still be modified as a function of beliefs, emotions and expectations through activity of third-order areas, including the orbitofrontal and perigenual/limbic networks. The pain we remember results from continuous interaction of these subsystems, and substantial changes in the pain experience can be achieved by acting on each of them. Neuropathic pain (NP) is associated with changes in each of these levels of integration. The most robust abnormality in NP is a functional depression of thalamic activity, reversible with therapeutic manoeuvres and associated with rhythmic neural bursting. Neuropathic allodynia has been associated with enhancement of ipsilateral over contralateral insular activation and lack of reactivity in orbitofrontal/perigenual areas. Although lack of response of perigenual cortices may be an epiphenomenon of chronic pain, the enhancement of ipsilateral activity may reflect disinhibition of ipsilateral spinothalamic pathways due to depression of their contralateral counterpart. This in turn may bias perceptual networks and contribute to the subjective painful experience.

370 citations


Additional excerpts

  • ...—Claude Bernard...

    [...]

Journal ArticleDOI
TL;DR: It is contended that even in unconscious subjects, repeated limbic and vegetative activation by painful stimuli via spino‐amygdalar pathways can generate implicit memory traces and stimulus‐response abnormal sequences, possibly contributing to long‐standing anxiety or hyperalgesic syndromes in patients surviving coma.
Abstract: The aversive experience we call "pain" results from the coordinated activation of multiple brain areas, commonly described as a "pain matrix". This is not a fixed arrangement of structures but rather a fluid system composed of several interacting networks: A 'nociceptive matrix' includes regions receiving input from ascending nociceptive systems, and ensures the bodily characteristics of physical pain. A further set of structures receiving secondary input supports the 'salience' attributes of noxious stimuli, triggers top-down cognitive controls, and -most importantly- ensures the passage from pre-conscious nociception to conscious pain. Expectations and beliefs can still modulate the conscious experience via activity in supramodal regions with widespread cortical projections such as the ventral tegmental area. Intracortical EEG responses in humans show that nociceptive cortical processing is initiated in parallel in sensory, motor and limbic areas; it progresses rapidly to the recruitment of anterior insular and fronto-parietal networks, and finally to the activation of perigenual, posterior cingulate and hippocampal structures. Functional connectivity between sensory and high-level networks increases during the first second post-stimulus, which may be determinant for access to consciousness. A model is described, progressing from unconscious sensori-motor and limbic processing of spinothalamic and spino-parabrachial input, to an immediate sense of awareness supported by coordinated activity in sensorimotor and fronto-parieto-insular networks, and leading to full declarative consciousness through integration with autobiographical memories and self-awareness, involving posterior cingulate and medial temporal areas. This complete sequence is only present during full vigilance states. We contend, however, that even in unconscious subjects, repeated limbic and vegetative activation by painful stimuli via spino-amygdalar pathways can generate implicit memory traces and stimulus-response abnormal sequences, possibly contributing to long-standing anxiety or hyperalgesic syndromes in patients surviving coma.

82 citations

Journal ArticleDOI
TL;DR: The results suggest that the human cortex does not shift from sleep to wake in an abrupt binary way, and stereotyped arousals at the thalamic level seem to be associated with different patterns of cortical arousals due to various regulation factors.

65 citations


Cites background from "Filtering the reality: Functional d..."

  • ...Laser stimulation protocol is detailed in Bastuji et al. (2012)....

    [...]

  • ...…impossible to explore with scalp EEG, intra-cerebral recordings performed in epileptic patients have proved to be useful in many electrophysiological sleep studies (Nobili et al., 2011; Sarasso et al., 2014; Bastuji et al., 2012; Magnin et al., 2004; Nir et al., 2011; Peter-Derex et al., 2012)....

    [...]

Journal ArticleDOI
01 Feb 2017-Medicine
TL;DR: Examining the multidimensional construct of pain in concussion/mTBI through a sex lens garners new directions for future longitudinal research on the pain mechanisms involved in postconcussion syndrome.

35 citations

Journal ArticleDOI
TL;DR: This patient exhibited finger lifts in response to stimulations delivered during paradoxical (REM) sleep, suggesting that during PS, not only the processing of sensory inputs but also the capacity for the sleeper to intentionally indicate his perception could be preserved under particular circumstances is suggested.
Abstract: Sleep disruption by painful stimuli is frequently observed both in clinical and experimental conditions. Nociceptive stimuli produce significantly more arousals (30% of stimuli) than non-nociceptive ones. However, even if they do not interrupt sleep, they can trigger a variety of other reactions. Reflex behaviours in response to nociceptive stimuli can be observed during all sleep stages, and are more likely to occur in association with an arousal than alone. Cardiac activation represents a robust sympathetically driven effect preserved whatever the state of vigilance, even if its magnitude can be modulated by a concomitant cortical arousal. Not withstanding these reactions, incorporation of nociceptive stimuli into dream content remains limited. At cortical level, laser-evoked potential studies demonstrate that the processing of nociceptive stimulations is partly conserved during all sleep stages. Furthermore, when nociceptive stimulations interrupt sleep, the cortical response presents a late component suggesting that the stimulation has to be cognitively processed in order to produce a subsequent arousal. More complex reactions to nociceptive stimulations were occasionally reported. In this context, an epileptic patient with intracerebral electrodes implanted for therapeutic purposes allowed us extending these observations. This patient exhibited finger lifts in response to stimulations delivered during paradoxical (REM) sleep. This motor reaction was previously used during wakefulness to indicate that the stimulation had been perceived. When these finger lifts occurred a systematic re-activation of the anterior cingulate preceded each movement. This observation suggests that during PS, not only the processing of sensory inputs but also the capacity for the sleeper to intentionally indicate his perception could be preserved under particular circumstances.

22 citations

References
More filters
Journal ArticleDOI
TL;DR: Techniques of recording, scoring, and doubtful records are carefully considered, and Recommendations for abbreviations, types of pictorial representation, order of polygraphic tracings are suggested.
Abstract: With the vast research interest in sleep and dreams that has developed in the past 15 years, there is increasing evidence of noncomparibility of scoring of nocturnal electroencephalograph-electroculograph records from different laboratories. In 1967 a special session on scoring criteria was held at the seventh annual meeting of the Association for the Psychophysiological Study of Sleep. Under the auspices of the UCLA Brain Information, an ad hoc committee composed of some of the most active current researchers was formed in 1967 to develop a terminology and scoring system for universal use. It is the results of the labors of this group that is now published under the imprimatur of the National Institutes of Health. The presentation is beautifully clear. Techniques of recording, scoring, and doubtful records are carefully considered. Recommendations for abbreviations, types of pictorial representation, order of polygraphic tracings are suggested.

8,001 citations

Journal ArticleDOI
TL;DR: A systematic review of the literature regarding how activity in diverse brain regions creates and modulates the experience of acute and chronic pain states, emphasizing the contribution of various imaging techniques to emerging concepts is presented in this paper.

2,686 citations

Journal ArticleDOI
15 Aug 1997-Science
TL;DR: These findings provide direct experimental evidence in humans linking frontal-lobe limbic activity with pain affect, as originally suggested by early clinical lesion studies.
Abstract: Recent evidence demonstrating multiple regions of human cerebral cortex activated by pain has prompted speculation about their individual contributions to this complex experience. To differentiate cortical areas involved in pain affect, hypnotic suggestions were used to alter selectively the unpleasantness of noxious stimuli, without changing the perceived intensity. Positron emission tomography revealed significant changes in pain-evoked activity within anterior cingulate cortex, consistent with the encoding of perceived unpleasantness, whereas primary somatosensory cortex activation was unaltered. These findings provide direct experimental evidence in humans linking frontal-lobe limbic activity with pain affect, as originally suggested by early clinical lesion studies.

2,444 citations


"Filtering the reality: Functional d..." refers background in this paper

  • ...Indeed, although the thalamo-cingulate projections have been often considered to subserve affective components of the pain experience [e.g. Kulkarni et al., 2005; Price, 2000; Rainville et al., 1997], recent evidence in humans and monkeys shows that the spinothalamic input to anterior cingulate cortex (ACC) concern mainly, if not exclusively, cingulate regions primary involved in motor control, orienting and attention for action [Dum et al....

    [...]

  • ...…projections have been often considered to subserve affective components of the pain experience [e.g. Kulkarni et al., 2005; Price, 2000; Rainville et al., 1997], recent evidence in humans and monkeys shows that the spinothalamic input to anterior cingulate cortex (ACC) concern mainly,…...

    [...]