scispace - formally typeset
Open AccessBook

Finite Element Analysis

B. A. Szabó, +1 more
Reads0
Chats0
TLDR
In this article, the authors present a general solution based on the principle of virtual work for two-dimensional linear elasticity problems and their convergence rates in one-dimensional dimensions. But they do not consider the case of three-dimensional LEL problems.
Abstract
Mathematical Models and Engineering Decisions. Generalized Solutions Based on the Principle of Virtual Work. Finite Element Discretizations in One Dimension. Extensions and Their Convergence Rates in One Dimension. Two-Dimensional Linear Elastostatic Problems. Element-Level Basis Functions in Two Dimensions. Computation of Stiffness Matrices and Load Vectors for Two Dimensional Elastostatic Problems. Potential Flow Problems. Assembly, Constraint Enforcement, and Solution. Extensions and Their Convergence Rates in Two Dimensions. Computation of Displacements, Stresses and Stress Resultants. Computation of the Coefficients of Asymptotic Expansions. Three-Dimensional Linear Elastostatic Problems. Models for Plates and Shells. Miscellaneous Topics. Estimation and Control of Errors of Discretization. Mathematical Models. Appendices. Index.

read more

Citations
More filters
Journal ArticleDOI

A finite element method for crack growth without remeshing

TL;DR: In this article, a displacement-based approximation is enriched near a crack by incorporating both discontinuous elds and the near tip asymptotic elds through a partition of unity method.
Journal ArticleDOI

Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement

TL;DR: In this article, the concept of isogeometric analysis is proposed and the basis functions generated from NURBS (Non-Uniform Rational B-Splines) are employed to construct an exact geometric model.
Journal ArticleDOI

Sampling-50 years after Shannon

TL;DR: The standard sampling paradigm is extended for a presentation of functions in the more general class of "shift-in-variant" function spaces, including splines and wavelets, and variations of sampling that can be understood from the same unifying perspective are reviewed.
Journal ArticleDOI

The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures

TL;DR: The spectral element method as discussed by the authors is a high-order variational method for the spatial approximation of elastic-wave equations, which can be used to simulate elastic wave propagation in realistic geological structures involving complieated free surface topography and material interfaces for two- and three-dimensional geometries.
Journal ArticleDOI

Modeling holes and inclusions by level sets in the extended finite-element method

TL;DR: In this paper, a methodology to model arbitrary holes and material interfaces (inclusions) without meshing the internal boundaries is proposed, which couples the level set method with the extended finite element method (X-FEM).