scispace - formally typeset
Open AccessBook

Finite Element Methods for Flow Problems

Jean Donea, +1 more
Reads0
Chats0
TLDR
An introduction to monotonicity-preserving schemes and other stabilization techniques and new trends in fluid dynamics, and main issues in incompressible flow problems.
Abstract
Preface. 1. Introduction and preliminaries. Finite elements in fluid dynamics. Subjects covered. Kinematical descriptions of the flow field. The basic conservation equations. Basic ingredients of the finite element method. 2. Steady transport problems. Problem statement. Galerkin approximation. Early Petrov-Galerkin methods. Stabilization techniques. Other stabilization techniques and new trends. Applications and solved exercises. 3. Unsteady convective transport. Introduction. Problem statement. The methods of characteristics. Classical time and space discretization techniques. Stability and accuracy analysis. Taylor-Galerkin Methods. An introduction to monotonicity-preserving schemes. Least-squares-based spatial discretization. The discontinuous Galerkin method. Space-time formulations. Applications and solved exercises. 4. Compressible Flow Problems. Introduction. Nonlinear hyperbolic equations. The Euler equations. Spatial discretization techniques. Numerical treatment of shocks. Nearly incompressible flows. Fluid-structure interaction. Solved exercises. 5. Unsteady convection-diffusion problems. Introduction. Problem statement. Time discretization procedures. Spatial discretization procedures. Stabilized space-time formulations. Solved exercises. 6. Viscous incompressible flows. Introduction Basic concepts. Main issues in incompressible flow problems. Trial solutions and weighting functions. Stationary Stokes problem. Steady Navier-Stokes problem. Unsteady Navier-Stokes equations. Applications and Solved Exercices. References. Index.

read more

Citations
More filters
Book

Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book

TL;DR: This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software.
Journal ArticleDOI

The extended/generalized finite element method: An overview of the method and its applications

TL;DR: An overview of the extended/generalized finite element method (GEFM/XFEM) with emphasis on methodological issues is presented in this article, which enables accurate approximation of solutions that involve jumps, kinks, singularities, and other locally non-smooth features within elements.
Reference EntryDOI

Arbitrary Lagrangian–Eulerian Methods

TL;DR: In this paper, the authors provide an in-depth survey of arbitrary Lagrangian-Eulerian (ALE) methods, including both conceptual aspects of the mixed kinematical description and numerical implementation details.
Journal ArticleDOI

An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces

TL;DR: It is shown that hierarchical refinement considerably increases the flexibility of this approach by adaptively resolving local features of NURBS, which combines full analysis suitability of the basis with straightforward implementation in tree data structures and simple generalization to higher dimensions.
Journal ArticleDOI

Recent Advances and New Challenges in the Use of the Proper Generalized Decomposition for Solving Multidimensional Models

TL;DR: This paper revisits a powerful discretization technique, the Proper Generalized Decomposition—PGD, illustrating its ability for solving highly multidimensional models.