scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Finite-size corrections in critical symmetry-resolved entanglement

04 Mar 2021-Vol. 10, Iss: 3, pp 054
TL;DR: In this paper, the authors examined the finite-size corrections to the entropy equipartition phenomenon, and showed that the nature of the symmetry group plays a crucial role in the decay of symmetry-resolved entropies.
Abstract: In the presence of a conserved quantity, symmetry-resolved entanglement entropies are a refinement of the usual notion of entanglement entropy of a subsystem. For critical 1d quantum systems, it was recently shown in various contexts that these quantities generally obey entropy equipartition in the scaling limit, i.e. they become independent of the symmetry sector. In this paper, we examine the finite-size corrections to the entropy equipartition phenomenon, and show that the nature of the symmetry group plays a crucial role. In the case of a discrete symmetry group, the corrections decay algebraically with system size, with exponents related to the operators' scaling dimensions. In contrast, in the case of a U(1) symmetry group, the corrections only decay logarithmically with system size, with model-dependent prefactors. We show that the determination of these prefactors boils down to the computation of twisted overlaps.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
19 May 2021
TL;DR: In this article, the authors considered the problem of symmetry decomposition of the entanglement negativity in free fermionic systems and derived universal results for the charge imbalance resolved negativity.
Abstract: We consider the problem of symmetry decomposition of the entanglement negativity in free fermionic systems. Rather than performing the standard partial transpose, we use the partial time-reversal transformation which naturally encodes the fermionic statistics. The negativity admits a resolution in terms of the charge imbalance between the two subsystems. We introduce a normalised version of the imbalance resolved negativity which has the advantage to be an entanglement proxy for each symmetry sector, but may diverge in the limit of pure states for some sectors. Our main focus is then the resolution of the negativity for a free Dirac field at finite temperature and size. We consider both bipartite and tripartite geometries and exploit conformal field theory to derive universal results for the charge imbalance resolved negativity. To this end, we use a geometrical construction in terms of an Aharonov-Bohm-like flux inserted in the Riemann surface defining the entanglement. We interestingly find that the entanglement negativity is always equally distributed among the different imbalance sectors at leading order. Our analytical findings are tested against exact numerical calculations for free fermions on a lattice.

53 citations

Journal ArticleDOI
TL;DR: In this article, the problem of decomposition of the Renyi entanglement entropies in theories with a non-abelian symmetry has been studied, and it has been shown that at leading order in the subsystem size L, the Entanglement is equally distributed among the different sectors labelled by the irreducible representation of the associated algebra.
Abstract: We consider the problem of the decomposition of the Renyi entanglement entropies in theories with a non-abelian symmetry by doing a thorough analysis of Wess-Zumino-Witten (WZW) models. We first consider SU(2)k as a case study and then generalise to an arbitrary non-abelian Lie group. We find that at leading order in the subsystem size L the entanglement is equally distributed among the different sectors labelled by the irreducible representation of the associated algebra. We also identify the leading term that breaks this equipartition: it does not depend on L but only on the dimension of the representation. Moreover, a log log L contribution to the Renyi entropies exhibits a universal prefactor equal to half the dimension of the Lie group.

52 citations

Journal ArticleDOI
TL;DR: In this paper, the authors generalized the form factor bootstrap approach to integrable field theories with U(1) symmetry to derive matrix elements of composite branch-point twist fields associated with symmetry resolved entanglement entropies.
Abstract: We generalise the form factor bootstrap approach to integrable field theories with U(1) symmetry to derive matrix elements of composite branch-point twist fields associated with symmetry resolved entanglement entropies. The bootstrap equations are solved for the free massive Dirac and complex boson theories, which are the simplest theories with U(1) symmetry. We present the exact and complete solution for the bootstrap, including vacuum expectation values and form factors involving any type and arbitrarily number of particles. The non-trivial solutions are carefully cross-checked by performing various limits and by the application of the ∆-theorem. An alternative and compact determination of the novel form factors is also presented. Based on the form factors of the U(1) composite branch-point twist fields, we re-derive earlier results showing entanglement equipartition for an interval in the ground state of the two models.

49 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a systematic approach to compute the subsystem trace distances and relative entropies for subsystem reduced density matrices associated to excited states in different symmetry sectors of a 1+1 dimensional conformal field theory having an internal U(1) symmetry.
Abstract: We develop a systematic approach to compute the subsystem trace distances and relative entropies for subsystem reduced density matrices associated to excited states in different symmetry sectors of a 1+1 dimensional conformal field theory having an internal U(1) symmetry. We provide analytic expressions for the charged moments corresponding to the resolution of both relative entropies and distances for general integer $n$. For the relative entropies, these formulas are manageable and the analytic continuation to $n=1$ can be worked out in most of the cases. Conversely, for the distances the corresponding charged moments become soon untreatable as $n$ increases. A remarkable result is that relative entropies and distances are the same for all symmetry sectors, i.e. they satisfy entanglement equipartition, like the entropies. Moreover, we exploit the OPE expansion of composite twist fields, to provide very general results when the subsystem is much smaller than the total system. We focus on the massless compact boson and our results are tested against exact numerical calculations in the XX spin chain.

45 citations

Journal ArticleDOI
TL;DR: In this article, the symmetry resolution of relative entropies in the 1+1 dimensional free massless compact boson conformal field theory (CFT) was considered and the symmetry resolved Renyi relative entropy between one interval reduced density matrices of CFT primary states using the replica method was obtained.
Abstract: We consider the symmetry resolution of relative entropies in the 1+1 dimensional free massless compact boson conformal field theory (CFT) which presents an internal $U(1)$ symmetry. We calculate various symmetry resolved Renyi relative entropies between one interval reduced density matrices of CFT primary states using the replica method. By taking the replica limit, the symmetry resolved relative entropy can be obtained. We also take the XX spin chain model as a concrete lattice realization of this CFT to perform numerical computation. The CFT predictions are tested against exact numerical calculations finding perfect agreement.

40 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a systematic study of entanglement entropy in relativistic quantum field theory is carried out, where the von Neumann entropy is defined as the reduced density matrix ρA of a subsystem A of a 1+1-dimensional critical system, whose continuum limit is a conformal field theory with central charge c, and the results are verified for a free massive field theory.
Abstract: We carry out a systematic study of entanglement entropy in relativistic quantum field theory. This is defined as the von Neumann entropy SA = −Tr ρAlogρA corresponding to the reduced density matrix ρA of a subsystem A. For the case of a 1+1-dimensional critical system, whose continuum limit is a conformal field theory with central charge c, we re-derive the result of Holzhey et al when A is a finite interval of length in an infinite system, and extend it to many other cases: finite systems, finite temperatures, and when A consists of an arbitrary number of disjoint intervals. For such a system away from its critical point, when the correlation length ξ is large but finite, we show that , where is the number of boundary points of A. These results are verified for a free massive field theory, which is also used to confirm a scaling ansatz for the case of finite size off-critical systems, and for integrable lattice models, such as the Ising and XXZ models, which are solvable by corner transfer matrix methods. Finally the free field results are extended to higher dimensions, and used to motivate a scaling form for the singular part of the entanglement entropy near a quantum phase transition.

3,029 citations


"Finite-size corrections in critical..." refers methods in this paper

  • ...We employ essentially the technique introduced in [6], which relies on the “replica trick” [23] or cyclic orbifold [24] formulation, and more specifically on the introduction of composite twist operators inserting flux lines (which are nothing but topological defects) conjugate to the local charge, ending at the branch points connecting the replicas....

    [...]

Journal ArticleDOI
TL;DR: It is proposed that the low-lying entanglement spectrum can be used as a "fingerprint" to identify topological order and is compared with a generic 5/2 state obtained by finite-size diagonalization of the second-Landau-level-projected Coulomb interactions.
Abstract: We study the "entanglement spectrum" (a presentation of the Schmidt decomposition analogous to a set of "energy levels") of a many-body state, and compare the Moore-Read model wave function for the nu=5/2 fractional quantum Hall state with a generic 5/2 state obtained by finite-size diagonalization of the second-Landau-level-projected Coulomb interactions. Their spectra share a common "gapless" structure, related to conformal field theory. In the model state, these are the only levels, while in the "generic" case, they are separated from the rest of the spectrum by a clear "entanglement gap", which appears to remain finite in the thermodynamic limit. We propose that the low-lying entanglement spectrum can be used as a "fingerprint" to identify topological order.

1,287 citations


"Finite-size corrections in critical..." refers background in this paper

  • ...Over the last decade, following [1], it was also realised that the full spectrum of ρA, called the entanglement spectrum, also contains relevant information, especially for the understanding of topological order....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the form factors for local spin operators of the XXZ Heisenberg spin-z finite chain are computed in terms of expectation values (in ferromagnetic reference state) of the operator entries of the quantum monodromy matrix satisfying Yang-Baxter algebra.

527 citations

Journal ArticleDOI
TL;DR: In this paper, the properties of reduced density matrices for free fermionic or bosonic many-particle systems in their ground state are reviewed for various one-dimensional situations, including also the evolution after global or local quenches.
Abstract: We review the properties of reduced density matrices for free fermionic or bosonic many-particle systems in their ground state. Their basic feature is that they have a thermal form and thus lead to a quasi-thermodynamic problem with a certain free-particle Hamiltonian. We discuss the derivation of this result, the character of the Hamiltonian and its eigenstates, the single-particle spectra and the full spectra, the resulting entanglement and in particular the entanglement entropy. This is done for various one- and two-dimensional situations, including also the evolution after global or local quenches.

520 citations

Journal ArticleDOI
Bernard Nienhuis1
TL;DR: In this paper, it was shown that the q-state Potts model and then-vector model are equivalent to a Coulomb gas with an asymmetry between positive and negative charges.
Abstract: Many two-dimensional spin models can be transformed into Coulomb-gas systems in which charges interact via logarithmic potentials. For some models, such as the eight-vertex model and the Ashkin-Teller model, the Coulomb-gas representation has added significantly to the insight in the phase transitions. For other models, notably theXY model and the clock models, the equivalence has been instrumental for almost our entire understanding of the critical behavior. Recently it was shown that theq-state Potts model and then-vector model are equivalent to a Coulomb gas with an asymmetry between positive and negative charges. Fieldlike operators in these spin models transform noninteger charges and magnetic monopoles. With the aid of exactly solved models the Coulombgas representation allows analytic calculation of some critical indices.

491 citations


Additional excerpts

  • ...Back to the 6V model, if we fix α in the interval −π < α < π, the lattice operator vα is described in the scaling limit [34, 35] by the vertex operator Vα: vα(u, v) ' A1(α)aVα(z, z̄) (3....

    [...]