scispace - formally typeset
Open AccessJournal ArticleDOI

Finite-time Analysis of the Multiarmed Bandit Problem

Reads0
Chats0
TLDR
This work shows that the optimal logarithmic regret is also achievable uniformly over time, with simple and efficient policies, and for all reward distributions with bounded support.
Abstract
Reinforcement learning policies face the exploration versus exploitation dilemma, i.e. the search for a balance between exploring the environment to find profitable actions while taking the empirically best action as often as possible. A popular measure of a policy's success in addressing this dilemma is the regret, that is the loss due to the fact that the globally optimal policy is not followed all the times. One of the simplest examples of the exploration/exploitation dilemma is the multi-armed bandit problem. Lai and Robbins were the first ones to show that the regret for this problem has to grow at least logarithmically in the number of plays. Since then, policies which asymptotically achieve this regret have been devised by Lai and Robbins and many others. In this work we show that the optimal logarithmic regret is also achievable uniformly over time, with simple and efficient policies, and for all reward distributions with bounded support.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book

Reinforcement Learning: An Introduction

TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.

Deep reinforcement learning with double Q-learning

TL;DR: In this article, the authors show that the DQN algorithm suffers from substantial overestimation in some games in the Atari 2600 domain, and they propose a specific adaptation to the algorithm and show that this algorithm not only reduces the observed overestimations, but also leads to much better performance on several games.
Book

Prediction, learning, and games

TL;DR: In this paper, the authors provide a comprehensive treatment of the problem of predicting individual sequences using expert advice, a general framework within which many related problems can be cast and discussed, such as repeated game playing, adaptive data compression, sequential investment in the stock market, sequential pattern analysis, and several other problems.
Book ChapterDOI

Bandit based monte-carlo planning

TL;DR: In this article, a bandit-based Monte-Carlo planning algorithm is proposed for large state-space Markovian decision problems (MDPs), which is one of the few viable approaches to find near-optimal solutions.
Journal ArticleDOI

A Survey of Monte Carlo Tree Search Methods

TL;DR: A survey of the literature to date of Monte Carlo tree search, intended to provide a snapshot of the state of the art after the first five years of MCTS research, outlines the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarizes the results from the key game and nongame domains.
References
More filters
Journal ArticleDOI

Optimization by Simulated Annealing

TL;DR: There is a deep and useful connection between statistical mechanics and multivariate or combinatorial optimization (finding the minimum of a given function depending on many parameters), and a detailed analogy with annealing in solids provides a framework for optimization of very large and complex systems.
Book

Reinforcement Learning: An Introduction

TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Book

Adaptation in natural and artificial systems

TL;DR: Names of founding work in the area of Adaptation and modiication, which aims to mimic biological optimization, and some (Non-GA) branches of AI.
Book ChapterDOI

Probability Inequalities for sums of Bounded Random Variables

TL;DR: In this article, upper bounds for the probability that the sum S of n independent random variables exceeds its mean ES by a positive number nt are derived for certain sums of dependent random variables such as U statistics.
Book

Introduction to Reinforcement Learning

TL;DR: In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning.
Related Papers (5)