scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Fipronil biodegradation and metabolization by Bacillus megaterium strain E1

About: This article is published in Journal of Chemical Technology & Biotechnology.The article was published on 2021-04-29. It has received 7 citations till now. The article focuses on the topics: Bacillus megaterium & Fipronil.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article , the role of plant growth-promoting rhizobacteria (PGPR) and their potential mechanisms that foster plants' growth and also enhance phytoremediation capacity are focussed.

40 citations

Journal ArticleDOI
TL;DR: In this paper , the authors discuss the bioremediation potential of microbial strains in contaminated soil and water, and show that fipronil can be remediated from the environment using combined ecotechnologies.

6 citations

Journal ArticleDOI
TL;DR: The results suggest that different dioxin-metabolizing pathways exist under the same environmental conditions and work differentially for an effective removal of PCDD/Fs.
Abstract: Dioxins (PCDD/Fs) are one of the most toxic environmental pollutants known to date. Due to their structural stability and extreme hydrophobicity dioxins persist in the ecosystems and can be bioaccumulated to critical levels in both human and animal food chains. Soils are the most important reservoirs of dioxins, thus soil microbes are highly exposed to dioxins, impacting their diversity, genetics and functional characteristics. To experimentally evaluate these effects, the diversity and functionality of soil microbes were assessed in seven local sites potentially exposed to PCDD/Fs. Concentration of dioxins in soils samples was firstly determined and the soils cultivable microbes were identified and molecularly characterized as a function of their in vitro ability to degrade the TCDD. Our results revealed that the diversity of microbial communities largely varied among the sites and was likely inversely proportional to their level of contamination with PCDD/Fs. Furthermore, the genetics profiling of dioxin-degrading bacteria revealed that the Cytochrome P450 CYPBM3-positive species largely belong to the genus Bacillus and were randomly distributed among the soils samples, while the angular dioxygenase (AD)-positive species were mainly found in highly polluted soils with a major presence of the genus Pseudomonas. Finally, the functionality of dioxin-biodegrading genes (AD or CYPBM3), was confirmed by the ability of bacteria to consume 2,3,7,8-TCDD, and this was synchronized with an induced level of both pathways. Our results suggest that different dioxin-metabolizing pathways exist under the same environmental conditions and work differentially for an effective removal of PCDD/Fs.

2 citations

References
More filters
Journal ArticleDOI
TL;DR: The neighbor-joining method and Sattath and Tversky's method are shown to be generally better than the other methods for reconstructing phylogenetic trees from evolutionary distance data.
Abstract: A new method called the neighbor-joining method is proposed for reconstructing phylogenetic trees from evolutionary distance data. The principle of this method is to find pairs of operational taxonomic units (OTUs [= neighbors]) that minimize the total branch length at each stage of clustering of OTUs starting with a starlike tree. The branch lengths as well as the topology of a parsimonious tree can quickly be obtained by using this method. Using computer simulation, we studied the efficiency of this method in obtaining the correct unrooted tree in comparison with that of five other tree-making methods: the unweighted pair group method of analysis, Farris's method, Sattath and Tversky's method, Li's method, and Tateno et al.'s modified Farris method. The new, neighbor-joining method and Sattath and Tversky's method are shown to be generally better than the other methods.

57,055 citations

Journal ArticleDOI
TL;DR: The recently‐developed statistical method known as the “bootstrap” can be used to place confidence intervals on phylogenies and shows significant evidence for a group if it is defined by three or more characters.
Abstract: The recently-developed statistical method known as the "bootstrap" can be used to place confidence intervals on phylogenies. It involves resampling points from one's own data, with replacement, to create a series of bootstrap samples of the same size as the original data. Each of these is analyzed, and the variation among the resulting estimates taken to indicate the size of the error involved in making estimates from the original data. In the case of phylogenies, it is argued that the proper method of resampling is to keep all of the original species while sampling characters with replacement, under the assumption that the characters have been independently drawn by the systematist and have evolved independently. Majority-rule consensus trees can be used to construct a phylogeny showing all of the inferred monophyletic groups that occurred in a majority of the bootstrap samples. If a group shows up 95% of the time or more, the evidence for it is taken to be statistically significant. Existing computer programs can be used to analyze different bootstrap samples by using weights on the characters, the weight of a character being how many times it was drawn in bootstrap sampling. When all characters are perfectly compatible, as envisioned by Hennig, bootstrap sampling becomes unnecessary; the bootstrap method would show significant evidence for a group if it is defined by three or more characters.

40,349 citations

Journal ArticleDOI
TL;DR: Some examples were worked out using reported globin sequences to show that synonymous substitutions occur at much higher rates than amino acid-altering substitutions in evolution.
Abstract: Some simple formulae were obtained which enable us to estimate evolutionary distances in terms of the number of nucleotide substitutions (and, also, the evolutionary rates when the divergence times are known). In comparing a pair of nucleotide sequences, we distinguish two types of differences; if homologous sites are occupied by different nucleotide bases but both are purines or both pyrimidines, the difference is called type I (or “transition” type), while, if one of the two is a purine and the other is a pyrimidine, the difference is called type II (or “transversion” type). Letting P and Q be respectively the fractions of nucleotide sites showing type I and type II differences between two sequences compared, then the evolutionary distance per site is K = — (1/2) ln {(1 — 2P — Q) }. The evolutionary rate per year is then given by k = K/(2T), where T is the time since the divergence of the two sequences. If only the third codon positions are compared, the synonymous component of the evolutionary base substitutions per site is estimated by K'S = — (1/2) ln (1 — 2P — Q). Also, formulae for standard errors were obtained. Some examples were worked out using reported globin sequences to show that synonymous substitutions occur at much higher rates than amino acid-altering substitutions in evolution.

26,016 citations

Journal ArticleDOI
TL;DR: The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine and has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses.
Abstract: The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.

21,952 citations

Journal ArticleDOI
TL;DR: The third generation of the CAP sequence assembly program is described, which has a capability to clip 5' and 3' low-quality regions of reads and uses forward-reverse constraints to correct assembly errors and link contigs.
Abstract: The shotgun sequencing strategy has been used widely in genome sequencing projects. A major phase in this strategy is to assemble short reads into long sequences. A number of DNA sequence assembly programs have been developed (Staden 1980; Peltola et al. 1984; Huang 1992; Smith et al. 1993; Gleizes and Henaut 1994; Lawrence et al. 1994; Kececioglu and Myers 1995; Sutton et al. 1995; Green 1996). The FAKII program provides a library of routines for each phase of the assembly process (Larson et al. 1996). The GAP4 program has a number of useful interactive features (Bonfield et al. 1995). The PHRAP program clips 5′ and 3′ low-quality regions of reads and uses base quality values in evaluation of overlaps and generation of contig sequences (Green 1996). TIGR Assembler has been used in a number of megabase microbial genome projects (Sutton et al. 1995). Continued development and improvement of sequence assembly programs are required to meet the challenges of the human, mouse, and maize genome projects. We have developed the third generation of the CAP sequence assembly program (Huang 1992). The CAP3 program includes a number of improvements and new features. A capability to clip 5′ and 3′ low-quality regions of reads is included in the CAP3 program. Base quality values produced by PHRED (Ewing et al. 1998) are used in computation of overlaps between reads, construction of multiple sequence alignments of reads, and generation of consensus sequences. Efficient algorithms are employed to identify and compute overlaps between reads. Forward–reverse constraints are used to correct assembly errors and link contigs. Results of CAP3 on four BAC data sets are presented. The performance of CAP3 was compared with that of PHRAP on a number of BAC data sets. PHRAP often produces longer contigs than CAP3 whereas CAP3 often produces fewer errors in consensus sequences than PHRAP. It is easier to construct scaffolds with CAP3 than with PHRAP on low-pass data with forward–reverse constraints. An unusual feature of CAP3 is the use of forward–reverse constraints in the construction of contigs. A forward–reverse constraint is often produced by sequencing of both ends of a subclone. A forward–reverse constraint specifies that the two reads should be on the opposite strands of the DNA molecule within a specified range of distance. By sequencing both ends of each subclone, a large number of forward–reverse constraints are produced for a cosmid or BAC data set. A difficulty with use of forward–reverse constraints in assembly is that some of the forward–reverse constraints are incorrect because of errors in lane tracking and cloning. Our strategy for dealing with this difficulty is based on the observation that a majority of the constraints are correct and wrong constraints usually occur randomly. Thus, a few unsatisfied constraints in a contig may not be sufficient to indicate an assembly error in the contig. However, if a sufficient number of constraints are all inconsistent with a join in a contig and all support an alternative join, it is likely that the current join is an error, and the alternative join should be made.

5,074 citations