scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Fire suppression and ecosystem carbon storage

01 Oct 2000-Ecology (Ecological Society of America)-Vol. 81, Iss: 10, pp 2680-2685
TL;DR: A 35-year controlled burning experiment in Minnesota oak savanna showed that fire frequency had a great impact on ecosystem carbon (C) stores, with most carbon stored in woody biomass.
Abstract: A 35-year controlled burning experiment in Minnesota oak savanna showed that fire frequency had a great impact on ecosystem carbon (C) stores. Specifically, compared to the historical fire regime, fire suppression led to an average of 1.8 Mg·ha−1·yr−1 of C storage, with most carbon stored in woody biomass. Forest floor carbon stores were also significantly impacted by fire frequency, but there were no detectable effects of fire suppression on carbon in soil and fine roots combined, or in woody debris. Total ecosystem C stores averaged ∼110 Mg/ha in stands experiencing presettlement fire frequencies, but ∼220 Mg/ha in stands experiencing fire suppression. If comparable rates of C storage were to occur in other ecosystems in response to the current extent of fire suppression in the United States, fire suppression in the USA might account for 8–20% of missing global carbon.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
01 May 2008-Ecology
TL;DR: It is suggested that frequent fires promote oak-herbivore interactions that decelerate decomposition, which should amplify other influences of fire that slow nitrogen cycling.
Abstract: Fires can generate spatial variation in trophic interactions such as insect herbivory. If trophic interactions mediated by fire influence nutrient cycling, they could feed back on the more immediate consequences of fire on nutrient dynamics. Here we consider herbivore-induced effects on oak litter quality and decomposition within a long-term manipulation of fire frequency in central Minnesota, USA. We focused on bur oak (Quercus macrocarpa) trees, which are common across the fire frequency gradient and are often heavily infested with either lace bugs (Corythuca arcuata) or aphids (Hoplochaithropsus quercicola). We used targeted exclusion to test for herbivore-specific effects on litter chemistry and subsequent decomposition rates. Lace bug exclusion led to lower lignin concentrations in litterfall and subsequently accelerated decomposition. In contrast, aphid exclusion had no effect on litterfall chemistry or on decomposition rate, despite heavy infestation levels. Effects of lace bug herbivory on litterfall chemistry and decomposition were similar in burned and unburned areas. However, lace bug herbivory was much more common in burned than in unburned areas, whereas aphid herbivory was more common in unburned areas. These results suggest that frequent fires promote oak-herbivore interactions that decelerate decomposition. This effect should amplify other influences of fire that slow nitrogen cycling.

30 citations


Cites background from "Fire suppression and ecosystem carb..."

  • ...Key words: afterlife effects; aphid herbivory; Corythuca arcuata; decomposition; fire; lace bug herbivory; Hoplochaithropsus quercicola; lignin; nitrogen cycling; oak savanna; phenolics; Quercus macrocarpa....

    [...]

  • ...Fires can cause major disturbances to ecosystem-level processes through predictable changes in abiotic and biotic environments (Kozlowski and Ahlgren 1974, Boehner 1982, Tilman et al. 2000, Wan et al. 2001)....

    [...]

29 Apr 2009
TL;DR: The SERDP Ecosystem Management Project (SEMP) was initiated in 1998 by the Strategic Environmental Research and Development Program (SERDP), after a 1997 workshop on Department of Defense ecosystem management challenges as discussed by the authors.
Abstract: : SERDP Ecosystem Management Project (SEMP) was initiated in 1998 by the Strategic Environmental Research and Development Program (SERDP), after a 1997 workshop on Department of Defense ecosystem management challenges. After the workshop, SERDP allocated initial funding to a new project, titled the SERDP Ecosystem Management Project, designated as CS-1114, which changed in mid-2005 to SI-1114. SERDP funded five ecological studies under the guidance of SEMP (SERDP Ecosystem Management Project). Three of the studies focused on identify-ing ecological indicators that reflected training-caused disturbance. Two studies attempted to characterize state-transition thresholds that could be attributed to combined training and land management impacts. This report summarizes the findings and recommendations of these studies with regard to : (1) Potential Application, (2) Disturbance Threshold and Indicators, (3) Stream and Water Quality, and (4) Threatened, Endangered, and At-Risk species.

29 citations

Journal ArticleDOI
TL;DR: The aim of this paper is to analyze the temporal patterns of fire occurrence in Sardinia during the period 2000–2006 to identify land-use types where wildfires occur earlier or later than expected from a random null model.
Abstract: Because of the increasing anthropogenic fire activity, understanding the role of land-use in shaping wildfire regimes has become a major concern. In the last decade, an increasing number of studies have been carried out on the relationship between land-use and wildfire patterns, in order to identify land-use types where fire behaves selectively, showing a marked preference (or avoidance) in terms of fire incidence. By contrast, the temporal aspects of the relationship between landuse types and wildfire occurrence have received far less attention. The aim of this paper is, thus, to analyze the temporal patterns of fire occurrence in Sardinia (Italy) during the period 2000-2006 to identify land-use types where wildfires occur earlier or later than expected from a random null model. The study highlighted a close relationship between the timing of fire occurrence and land-cover that is primarily governed by two complementary processes: climatic factors that act indirectly on the timing of wildfires determining the spatial distribution of land-use types, and human population and human pressure that directly influence fire ignition. From a practical viewpoint, understanding the temporal trends of wildfires within the different land-use classes can be an effective decision-support tool for fire agencies in managing fire risk and for producing provisional models of fire behavior under changing climatic scenarios and evolving landscapes.

29 citations


Cites background from "Fire suppression and ecosystem carb..."

  • ...Besides these fire-related land-management practices, the growing human population and the consequent expansion of the rural–urban interface clearly imply that anthro- pogenic fires of intentional or accidental origin are unlikely to decrease (Tilman et al. 2000; CarmonaMoreno et al. 2005)....

    [...]

Journal ArticleDOI
TL;DR: A general overview of forest inventory developments and their potential to estimate forest carbon budgets and GHG emissions can be found in this paper, where the authors give an overview of the potential of forest inventories for estimating forest carbon budget and emissions.

28 citations


Cites background from "Fire suppression and ecosystem carb..."

  • ...prevention or reduction of disturbances may lead to higher average, long-term ecosystem carbon storage [58]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors propose to incorporate fire management in the protected areas plan, including the (re)use of prescribed fire and traditional burning in order to reintroduce fire regimens, fundamental to the landscape sustainability.
Abstract: Fires are important but socially and economically unwanted disturbances of the ecosystems. They cannot be considered as a problem, they are global phenomena. Protected areas are created to protect biodiversity, and strict protection is often applied, forgetting that fire had shaped that that we aim to protect. This harsh protection is producing important changes in the protected habitats and is increasing their vulnerability to destructive wildfires. Thus, it is of major interest to incorporate fire management in the protected areas plan, including the (re)use of prescribed fire and traditional burning in order to reintroduce fire regimens, fundamental to the landscape sustainability. This incorporation represents an enormous step in the habitats sustainability. Policies should be more focused on fire prevention than on its suppression. DOI: http://dx.doi.org/10.5755/j01.erem.59.1.856

28 citations


Cites background from "Fire suppression and ecosystem carb..."

  • ...This intervention had negative impacts on the protected areas ecosystems (Tilman et al. 2000, MarsdenSmedley and Kirkpatrick, 2000, Bond and Kelley 2005)....

    [...]

References
More filters
Book
06 Mar 1997
TL;DR: In this paper, the authors present a perspective of the global cycle of nitrogen and phosphorous, the global water cycle, and the global sulfur cycle from a global point of view.
Abstract: Part 1 Processes and reactions: origins the atmosphere the lithosphere the terrestrial biosphere biogeochemical cycling on land biogeochemistry in freshwater wetlands and lakes rivers and estuaries the sea. Part 2 Global cycles: the global water cycle the global carbon cycle the global cycle of nitrogen and phosphorous the global sulfur cycle a perspective.

3,871 citations

Journal ArticleDOI
14 Jan 1994-Science
TL;DR: Slowing deforestation, combined with an increase in forestation and other management measures to improve forest ecosystem productivity, could conserve or sequester significant quantities of carbon.
Abstract: Forest systems cover more than 4.1 x 109 hectares of the Earth9s land area. Globally, forest vegetation and soils contain about 1146 petagrams of carbon, with approximately 37 percent of this carbon in low-latitude forests, 14 percent in mid-latitudes, and 49 percent at high latitudes. Over two-thirds of the carbon in forest ecosystems is contained in soils and associated peat deposits. In 1990, deforestation in the low latitudes emitted 1.6 ± 0.4 petagrams of carbon per year, whereas forest area expansion and growth in mid- and high-latitude forest sequestered 0.7 ± 0.2 petagrams of carbon per year, for a net flux to the atmosphere of 0.9 ± 0.4 petagrams of carbon per year. Slowing deforestation, combined with an increase in forestation and other management measures to improve forest ecosystem productivity, could conserve or sequester significant quantities of carbon. Future forest carbon cycling trends attributable to losses and regrowth associated with global climate and land-use change are uncertain. Model projections and some results suggest that forests could be carbon sinks or sources in the future.

3,175 citations


"Fire suppression and ecosystem carb..." refers background or methods in this paper

  • ...…biomass creates ;20–25% of annual anthropogenic CO2 (Andreae 1991, Schimel 1995), modifications of fire frequency may significantly change regional and global C budgets (e.g., Fahenstock and Agee 1983, Andreae 1991, Stocks 1991, Dixon and Krankina 1993, Dixon et al. 1994, Sohngen and Haynes 1997)....

    [...]

  • ...This work was supported by National Science Foundation Grant 9411972 and by the Andrew Mellon Foundation....

    [...]

  • ...Our work supports the proposal that increased fire suppression and decreased anthropogenic burning of vegetation could significantly influence global carbon dynamics (Dixon et al. 1994, Sampson and Clark 1995, Sohngen and Haynes 1997, San Jose et al. 1998)....

    [...]

  • ...Dixon et al. (1994) calculated that fire management in Russia could lead to long-term C storage of 0.6 3 1015 g C/yr....

    [...]

Journal ArticleDOI
TL;DR: The terrestrial biosphere plays an important role in the global carbon cycle as mentioned in this paper, which is the fluxes of carbon among four main reservoirs: fossil carbon, the atmosphere, the oceans, and the terrestrial Biosphere.
Abstract: The terrestrial biosphere plays an important role in the global carbon cycle. In the 1994 Intergovernmental Panel Assessment on Climate Change (IPCC), an effort was made to improve the quantification of terrestrial exchanges and potential feedbacks from climate, changing CO2, and other factors; this paper presents the key results from that assessment, together with expanded discussion. The carbon cycle is the fluxes of carbon among four main reservoirs: fossil carbon, the atmosphere, the oceans, and the terrestrial biosphere. Emissions of fossil carbon during the 1980s averaged 5.5 Gt y−1. During the same period, the atmosphere gained 3.2 Gt C y−1 and the oceans are believed to have absorbed 2.0 Gt C y−1. The regrowing forests of the Northern Hemisphere may have absorbed 0.5 Gt C y−1 during this period. Meanwhile, tropical deforestation is thought to have released an average 1.6 Gt C y−1 over the 1980s. While the fluxes among the four pools should balance, the average 198Ds values lead to a ‘missing sink’ of 1.4 Gt C y−1 Several processes, including forest regrowth, CO2 fertilization of plant growth (c. 1.0 Gt C y−1), N deposition (c. 0.6 Gt C y−1), and their interactions, may account for the budget imbalance. However, it remains difficult to quantify the influences of these separate but interactive processes. Uncertainties in the individual numbers are large, and are themselves poorly quantified. This paper presents detail beyond the IPCC assessment on procedures used to approximate the flux uncertainties. Lack of knowledge about positive and negative feedbacks from the biosphere is a major limiting factor to credible simulations of future atmospheric CO2 concentrations. Analyses of the atmospheric gradients of CO2 and 13 CO2 concentrations provide increasingly strong evidence for terrestrial sinks, potentially distributed between Northern Hemisphere and tropical regions, but conclusive detection in direct biomass and soil measurements remains elusive. Current regional-to-global terrestrial ecosystem models with coupled carbon and nitrogen cycles represent the effects of CO2 fertilization differently, but all suggest longterm responses to CO2 that are substantially smaller than potential leaf- or laboratory whole plant-level responses. Analyses of emissions and biogeochemical fluxes consistent with eventual stabilization of atmospheric CO2 concentrations are sensitive to the way in which biospheric feedbacks are modeled by c. 15%. Decisions about land use can have effects of 100s of Gt C over the next few centuries, with similarly significant effects on the atmosphere. Critical areas for future research are continued measurements and analyses of atmospheric data (CO2 and 13CO2) to serve as large-scale constraints, process studies of the scaling from the photosynthetic response to CO2 to whole-ecosystem carbon storage, and rigorous quantification of the effects of changing land use on carbon storage.

1,510 citations


"Fire suppression and ecosystem carb..." refers background or methods in this paper

  • ...2680 Key words: carbon storage; fire suppression; missing carbon; oak savanna....

    [...]

  • ...San Jose et al. (1998) calculated that fire suppression, by causing the transformation of the 2.8 3 107 ha Venezuelan Orinoco Llanos from grassland to semideciduous forest, could lead to a C sink of 0.08 3 1015 g C/yr....

    [...]

  • ...Atmospheric CO2 is currently accumulating at ;3.2 3 1015 g C/yr (Schimel 1995)....

    [...]

  • ...Dixon et al. (1994) calculated that fire management in Russia could lead to long-term C storage of 0.6 3 1015 g C/yr....

    [...]

  • ...Because the burning of ecosystem biomass creates ;20–25% of annual anthropogenic CO2 (Andreae 1991, Schimel 1995), modifications of fire frequency may significantly change regional and global C budgets (e.g., Fahenstock and Agee 1983, Andreae 1991, Stocks 1991, Dixon and Krankina 1993, Dixon et al.…...

    [...]

Journal ArticleDOI
TL;DR: The first edition of Schlesinger's Biogeochemistry in 1991 was an early entry in the field of Earth system science/global change, and has since gained sufficient popularity and demand to merit a second, extensively revised edition.
Abstract: Compared to the well-established disciplines, the field of Earth system science/global change has relatively few books from which to choose. Of the small subset of books dealing specifically with biogeochemical aspects of global change, the first edition of Schlesinger's Biogeochemistry in 1991 was an early entry. It has since gained sufficient popularity and demand to merit a second, extensively revised edition. The first part of the book provides a general introduction to biogeochemistry and cycles, and to the origin of elements, our planet, and life on Earth. It then describes the functioning and biogeochemistry of the atmosphere, lithosphere, biosphere, and hydrosphere, including marine and freshwater systems. Although system function and features are stressed, the author begins to introduce global change topics, such as soil organic matter and global change in Chapter 5, and landscape and mass balance in Chapter 6.

1,075 citations


"Fire suppression and ecosystem carb..." refers background or methods in this paper

  • ...This work was supported by National Science Foundation Grant 9411972 and by the Andrew Mellon Foundation....

    [...]

  • ...Moreover, the immense global extent of tropical savanna and woodland, 2.45 3 109 ha (Schlesinger 1997), suggests that even moderate fire suppression in this ecosystem type could provide a globally significant C sink....

    [...]

Journal ArticleDOI
23 Jul 1999-Science
TL;DR: The rates at which lands in the United States were cleared for agriculture, abandoned, harvested for wood, and burned were reconstructed from historical data for the period 1700-1990 and used in a terrestrial carbon model to calculate annual changes in the amount of carbon stored in terrestrial ecosystems, including wood products.
Abstract: The rates at which lands in the United States were cleared for agriculture, abandoned, harvested for wood, and burned were reconstructed from historical data for the period 1700-1990 and used in a terrestrial carbon model to calculate annual changes in the amount of carbon stored in terrestrial ecosystems, including wood products. Changes in land use released 27 +/- 6 petagrams of carbon to the atmosphere before 1945 and accumulated 2 +/- 2 petagrams of carbon after 1945, largely as a result of fire suppression and forest growth on abandoned farmlands. During the 1980s, the net flux of carbon attributable to land management offset 10 to 30 percent of U.S. fossil fuel emissions.

1,035 citations


"Fire suppression and ecosystem carb..." refers background or methods in this paper

  • ...Houghton et al. (1999) estimated various sources of C storage in the United States....

    [...]

  • ...Because fire suppression might lead to a period of C accumulation (Houghton et al. 1999), current fire suppression in the United States (Fig....

    [...]

  • ...This work was supported by National Science Foundation Grant 9411972 and by the Andrew Mellon Foundation....

    [...]

  • ...2680 Key words: carbon storage; fire suppression; missing carbon; oak savanna....

    [...]