scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Fire suppression and ecosystem carbon storage

01 Oct 2000-Ecology (Ecological Society of America)-Vol. 81, Iss: 10, pp 2680-2685
TL;DR: A 35-year controlled burning experiment in Minnesota oak savanna showed that fire frequency had a great impact on ecosystem carbon (C) stores, with most carbon stored in woody biomass.
Abstract: A 35-year controlled burning experiment in Minnesota oak savanna showed that fire frequency had a great impact on ecosystem carbon (C) stores. Specifically, compared to the historical fire regime, fire suppression led to an average of 1.8 Mg·ha−1·yr−1 of C storage, with most carbon stored in woody biomass. Forest floor carbon stores were also significantly impacted by fire frequency, but there were no detectable effects of fire suppression on carbon in soil and fine roots combined, or in woody debris. Total ecosystem C stores averaged ∼110 Mg/ha in stands experiencing presettlement fire frequencies, but ∼220 Mg/ha in stands experiencing fire suppression. If comparable rates of C storage were to occur in other ecosystems in response to the current extent of fire suppression in the United States, fire suppression in the USA might account for 8–20% of missing global carbon.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The potential and limitations in employing carbon as a resource for organic chemicals, fuels, inorganic materials, and in using the biome to manage carbon are surveyed.

10 citations

01 Jan 2007
TL;DR: In this article, the most promising options to increase the capacity of forest ecosystems to act as carbon sink are evaluated quantitatively in terms of carbon and qualitatively in the terms of biodiversity.
Abstract: Forests sequester large amounts of carbon and are important for nature conservation. These functions can be important in contributing to targets set by the Kyoto Protocol of the United Nation?s Framework Convention on Climate Change (UNFCCC) and the Convention on Biodiversity (CBD). This report lists possible measures to increase the capacity of forest ecosystems to act as carbon sink. The most promising options are evaluated quantitatively in terms of carbon and qualitatively in terms of biodiversity.

10 citations

Journal ArticleDOI
TL;DR: Insight is provided into the phenological response of vegetation cover types typical of semi-arid savannas to spatially and temporally variable precipitation levels and land management schemes, allowing for better informed management and monitoring strategies for these environments.

9 citations

Journal ArticleDOI
TL;DR: In this paper, the status of remnant prairie patches in the Loess Hills of southeastern South Dakota using three parallel approaches was evaluated using aerial photograph analysis, vegetation surveys and stable carbon isotope analysis of soil organic matter.
Abstract: We evaluated the status of remnant prairie patches in the Loess Hills of southeastern South Dakota using three parallel approaches. Aerial photograph analysis, vegetation surveys and stable carbon isotope analysis of soil organic matter all yielded evidence of woody plant encroachment. Time series analysis of aerial photos indicated that forest cover expanded by 37.5% between 1941 and 2000. Vegetation surveys revealed several distinct community types ranging from forested ravines supporting basswood, American elm and black walnut trees to upland prairie remnants and oak savannas that now include encroaching eastern red cedar trees, and/or a dense understory of prickly ash, ironwood and other woodland species moving up from the ravines. Finally, carbon isotope values (δ13C) in soil cores decreased as much as 5–7‰ towards the soil surface consistent with increased prevalence of C3 forest species over C4 prairie species in recent years. One consequence of forest encroachment appears to be an increas...

9 citations

Book Chapter
15 Mar 2004
TL;DR: In this paper, the authors follow the consensus of the United Nations Commission on Sustainable Development (1996), which identified the major challenges for global sustainable development as (1) combating poverty; (2) protecting the quality and supply of freshwater resources; (3) combating desertification and drought; (4) combating deforestation; promoting sustainable agriculture and rural development; and (6) conserving biological diversity.
Abstract: Efforts to stabilize the atmospheric CO2 concentration take place within a fully coupled Earth system in which there are major interactions between the carbon cycle, the physical climate, and human activities. Hence it is necessary to consider atmospheric CO2 mitigation in the context of the Earth system as a whole, and its long-term sustainability. “Sustainability” and “sustainable development” have been defined in a number of ways. The Brundtland Report (World Commission on Environment and Development 1987) defined sustainable development as “development that meets the needs of the present, without compromising the ability of future generations to meet their own needs.” In practice, definitions of sustainable development hinge on several key issues: what has to be sustained, what has to be developed, for how long, and with what tradeoffs. It is necessary to consider economic, social, and environmental dimensions and to accommodate the different perspectives of each dimension as well as the interrelations between them. For the purposes of this chapter, we will follow the consensus of the United Nations Commission on Sustainable Development (1996), which identified the major challenges for global sustainable development as (1) combating poverty; (2) protecting the quality and supply of freshwater resources; (3) combating desertification and drought; (4) combating deforestation; (5) promoting sustainable agriculture and rural development; and (6) conserving biological diversity. To this list may be added the goal of the 1992 UN Framework Convention on Climate Change (UNFCCC) of preventing dangerous anthropogenic interference in the climate system,

9 citations


Cites background from "Fire suppression and ecosystem carb..."

  • ...Tilman et al. (2000) estimated that additional fire suppression in Siberian boreal forest and tropical savanna and woodland might conceivably decrease the rate of accumulation of atmospheric CO2 by 1.3 PgC y -1, or about 40 percent....

    [...]

References
More filters
Book
06 Mar 1997
TL;DR: In this paper, the authors present a perspective of the global cycle of nitrogen and phosphorous, the global water cycle, and the global sulfur cycle from a global point of view.
Abstract: Part 1 Processes and reactions: origins the atmosphere the lithosphere the terrestrial biosphere biogeochemical cycling on land biogeochemistry in freshwater wetlands and lakes rivers and estuaries the sea. Part 2 Global cycles: the global water cycle the global carbon cycle the global cycle of nitrogen and phosphorous the global sulfur cycle a perspective.

3,871 citations

Journal ArticleDOI
14 Jan 1994-Science
TL;DR: Slowing deforestation, combined with an increase in forestation and other management measures to improve forest ecosystem productivity, could conserve or sequester significant quantities of carbon.
Abstract: Forest systems cover more than 4.1 x 109 hectares of the Earth9s land area. Globally, forest vegetation and soils contain about 1146 petagrams of carbon, with approximately 37 percent of this carbon in low-latitude forests, 14 percent in mid-latitudes, and 49 percent at high latitudes. Over two-thirds of the carbon in forest ecosystems is contained in soils and associated peat deposits. In 1990, deforestation in the low latitudes emitted 1.6 ± 0.4 petagrams of carbon per year, whereas forest area expansion and growth in mid- and high-latitude forest sequestered 0.7 ± 0.2 petagrams of carbon per year, for a net flux to the atmosphere of 0.9 ± 0.4 petagrams of carbon per year. Slowing deforestation, combined with an increase in forestation and other management measures to improve forest ecosystem productivity, could conserve or sequester significant quantities of carbon. Future forest carbon cycling trends attributable to losses and regrowth associated with global climate and land-use change are uncertain. Model projections and some results suggest that forests could be carbon sinks or sources in the future.

3,175 citations


"Fire suppression and ecosystem carb..." refers background or methods in this paper

  • ...…biomass creates ;20–25% of annual anthropogenic CO2 (Andreae 1991, Schimel 1995), modifications of fire frequency may significantly change regional and global C budgets (e.g., Fahenstock and Agee 1983, Andreae 1991, Stocks 1991, Dixon and Krankina 1993, Dixon et al. 1994, Sohngen and Haynes 1997)....

    [...]

  • ...This work was supported by National Science Foundation Grant 9411972 and by the Andrew Mellon Foundation....

    [...]

  • ...Our work supports the proposal that increased fire suppression and decreased anthropogenic burning of vegetation could significantly influence global carbon dynamics (Dixon et al. 1994, Sampson and Clark 1995, Sohngen and Haynes 1997, San Jose et al. 1998)....

    [...]

  • ...Dixon et al. (1994) calculated that fire management in Russia could lead to long-term C storage of 0.6 3 1015 g C/yr....

    [...]

Journal ArticleDOI
TL;DR: The terrestrial biosphere plays an important role in the global carbon cycle as mentioned in this paper, which is the fluxes of carbon among four main reservoirs: fossil carbon, the atmosphere, the oceans, and the terrestrial Biosphere.
Abstract: The terrestrial biosphere plays an important role in the global carbon cycle. In the 1994 Intergovernmental Panel Assessment on Climate Change (IPCC), an effort was made to improve the quantification of terrestrial exchanges and potential feedbacks from climate, changing CO2, and other factors; this paper presents the key results from that assessment, together with expanded discussion. The carbon cycle is the fluxes of carbon among four main reservoirs: fossil carbon, the atmosphere, the oceans, and the terrestrial biosphere. Emissions of fossil carbon during the 1980s averaged 5.5 Gt y−1. During the same period, the atmosphere gained 3.2 Gt C y−1 and the oceans are believed to have absorbed 2.0 Gt C y−1. The regrowing forests of the Northern Hemisphere may have absorbed 0.5 Gt C y−1 during this period. Meanwhile, tropical deforestation is thought to have released an average 1.6 Gt C y−1 over the 1980s. While the fluxes among the four pools should balance, the average 198Ds values lead to a ‘missing sink’ of 1.4 Gt C y−1 Several processes, including forest regrowth, CO2 fertilization of plant growth (c. 1.0 Gt C y−1), N deposition (c. 0.6 Gt C y−1), and their interactions, may account for the budget imbalance. However, it remains difficult to quantify the influences of these separate but interactive processes. Uncertainties in the individual numbers are large, and are themselves poorly quantified. This paper presents detail beyond the IPCC assessment on procedures used to approximate the flux uncertainties. Lack of knowledge about positive and negative feedbacks from the biosphere is a major limiting factor to credible simulations of future atmospheric CO2 concentrations. Analyses of the atmospheric gradients of CO2 and 13 CO2 concentrations provide increasingly strong evidence for terrestrial sinks, potentially distributed between Northern Hemisphere and tropical regions, but conclusive detection in direct biomass and soil measurements remains elusive. Current regional-to-global terrestrial ecosystem models with coupled carbon and nitrogen cycles represent the effects of CO2 fertilization differently, but all suggest longterm responses to CO2 that are substantially smaller than potential leaf- or laboratory whole plant-level responses. Analyses of emissions and biogeochemical fluxes consistent with eventual stabilization of atmospheric CO2 concentrations are sensitive to the way in which biospheric feedbacks are modeled by c. 15%. Decisions about land use can have effects of 100s of Gt C over the next few centuries, with similarly significant effects on the atmosphere. Critical areas for future research are continued measurements and analyses of atmospheric data (CO2 and 13CO2) to serve as large-scale constraints, process studies of the scaling from the photosynthetic response to CO2 to whole-ecosystem carbon storage, and rigorous quantification of the effects of changing land use on carbon storage.

1,510 citations


"Fire suppression and ecosystem carb..." refers background or methods in this paper

  • ...2680 Key words: carbon storage; fire suppression; missing carbon; oak savanna....

    [...]

  • ...San Jose et al. (1998) calculated that fire suppression, by causing the transformation of the 2.8 3 107 ha Venezuelan Orinoco Llanos from grassland to semideciduous forest, could lead to a C sink of 0.08 3 1015 g C/yr....

    [...]

  • ...Atmospheric CO2 is currently accumulating at ;3.2 3 1015 g C/yr (Schimel 1995)....

    [...]

  • ...Dixon et al. (1994) calculated that fire management in Russia could lead to long-term C storage of 0.6 3 1015 g C/yr....

    [...]

  • ...Because the burning of ecosystem biomass creates ;20–25% of annual anthropogenic CO2 (Andreae 1991, Schimel 1995), modifications of fire frequency may significantly change regional and global C budgets (e.g., Fahenstock and Agee 1983, Andreae 1991, Stocks 1991, Dixon and Krankina 1993, Dixon et al.…...

    [...]

Journal ArticleDOI
TL;DR: The first edition of Schlesinger's Biogeochemistry in 1991 was an early entry in the field of Earth system science/global change, and has since gained sufficient popularity and demand to merit a second, extensively revised edition.
Abstract: Compared to the well-established disciplines, the field of Earth system science/global change has relatively few books from which to choose. Of the small subset of books dealing specifically with biogeochemical aspects of global change, the first edition of Schlesinger's Biogeochemistry in 1991 was an early entry. It has since gained sufficient popularity and demand to merit a second, extensively revised edition. The first part of the book provides a general introduction to biogeochemistry and cycles, and to the origin of elements, our planet, and life on Earth. It then describes the functioning and biogeochemistry of the atmosphere, lithosphere, biosphere, and hydrosphere, including marine and freshwater systems. Although system function and features are stressed, the author begins to introduce global change topics, such as soil organic matter and global change in Chapter 5, and landscape and mass balance in Chapter 6.

1,075 citations


"Fire suppression and ecosystem carb..." refers background or methods in this paper

  • ...This work was supported by National Science Foundation Grant 9411972 and by the Andrew Mellon Foundation....

    [...]

  • ...Moreover, the immense global extent of tropical savanna and woodland, 2.45 3 109 ha (Schlesinger 1997), suggests that even moderate fire suppression in this ecosystem type could provide a globally significant C sink....

    [...]

Journal ArticleDOI
23 Jul 1999-Science
TL;DR: The rates at which lands in the United States were cleared for agriculture, abandoned, harvested for wood, and burned were reconstructed from historical data for the period 1700-1990 and used in a terrestrial carbon model to calculate annual changes in the amount of carbon stored in terrestrial ecosystems, including wood products.
Abstract: The rates at which lands in the United States were cleared for agriculture, abandoned, harvested for wood, and burned were reconstructed from historical data for the period 1700-1990 and used in a terrestrial carbon model to calculate annual changes in the amount of carbon stored in terrestrial ecosystems, including wood products. Changes in land use released 27 +/- 6 petagrams of carbon to the atmosphere before 1945 and accumulated 2 +/- 2 petagrams of carbon after 1945, largely as a result of fire suppression and forest growth on abandoned farmlands. During the 1980s, the net flux of carbon attributable to land management offset 10 to 30 percent of U.S. fossil fuel emissions.

1,035 citations


"Fire suppression and ecosystem carb..." refers background or methods in this paper

  • ...Houghton et al. (1999) estimated various sources of C storage in the United States....

    [...]

  • ...Because fire suppression might lead to a period of C accumulation (Houghton et al. 1999), current fire suppression in the United States (Fig....

    [...]

  • ...This work was supported by National Science Foundation Grant 9411972 and by the Andrew Mellon Foundation....

    [...]

  • ...2680 Key words: carbon storage; fire suppression; missing carbon; oak savanna....

    [...]