scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Fire suppression and ecosystem carbon storage

01 Oct 2000-Ecology (Ecological Society of America)-Vol. 81, Iss: 10, pp 2680-2685
TL;DR: A 35-year controlled burning experiment in Minnesota oak savanna showed that fire frequency had a great impact on ecosystem carbon (C) stores, with most carbon stored in woody biomass.
Abstract: A 35-year controlled burning experiment in Minnesota oak savanna showed that fire frequency had a great impact on ecosystem carbon (C) stores. Specifically, compared to the historical fire regime, fire suppression led to an average of 1.8 Mg·ha−1·yr−1 of C storage, with most carbon stored in woody biomass. Forest floor carbon stores were also significantly impacted by fire frequency, but there were no detectable effects of fire suppression on carbon in soil and fine roots combined, or in woody debris. Total ecosystem C stores averaged ∼110 Mg/ha in stands experiencing presettlement fire frequencies, but ∼220 Mg/ha in stands experiencing fire suppression. If comparable rates of C storage were to occur in other ecosystems in response to the current extent of fire suppression in the United States, fire suppression in the USA might account for 8–20% of missing global carbon.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the spatio-temporal changes in trace gas emissions and burnt biomass by paleofires in Chinese Loess Plateau over the last two glacial cycles have been reconstructed using vegetation (C3/C4) specific fire emission factors and black carbon records in three loess-paleosol sections.
Abstract: . The spatio-temporal changes in trace gas emissions and burnt biomass by paleofires in Chinese Loess Plateau over the last two glacial cycles have been reconstructed using vegetation (C3/C4) specific fire emission factors and black carbon records in three loess-paleosol sections. Results show that the average mass emission rate (AMER) of total trace gases (TTG) and burnt biomass by fires (BBF) in glacial periods are 1~2 times higher than in interglacial periods, and they display a clear southward decrease during both glacial and interglacial periods. This pattern reflects the combined control on paleofire emissions by climate-induced fire regimes and succession of vegetation types. The substantial increases in TTG-AMER and BBF during the late Holocene relative to the middle-to-early Holocene at Lingtai and Weinan support existing conclusion that increased anthropogenic fire activities have occurred in Middle and Southern Plateau during late Holocene. To assess the influence of paleofires on soil carbon stocks, the ratios of BBF to above-ground net primary productivity (ANPP), estimated by magnetic susceptibility-based paleorainfall and paleotemperature reconstruction, were calculated. In the Northern Plateau, the BBF/ANPP ratios during glacial periods are nearly 90%, about 2~3 times higher than during interglacial periods, suggesting paleofires may be the overwhelming force modulating the cycling of terrestrial organic carbon in the region. However, in Middle and Southern Plateau, the large decrease in BBF/ANPP ratios to around 20% and 10% respectively during glacial and interglacial periods suggests that paleofires have had a minor impact on carbon storage in these areas during both glacial and interglacial periods.

2 citations


Cites background from "Fire suppression and ecosystem carb..."

  • ...On the other hand, in global carbon budgets, there still exists the so-called “missing carbon” sink, carbon that is evolved as CO2 but remains unaccounted for (Ojima25 et al., 1994; Schimel, 1995; Houghton et al., 1999, 2000; Tilman et al., 2000; Hurtt et al., 2002)....

    [...]

  • ...For example, a trend of increasing combustion through time generates a net source of carbon, while a trend of decreasing combustion causes a sink (Chen et al., 2000; Tilman et al., 2000)....

    [...]

  • ...As we have known, the main10 natural disturbance agent in most terrestrial ecosystems is wildfire, which can serve as a major driver of ecosystem carbon cycling and storage (Harden et al., 2000; Houghton et al., 2000; Tilman et al., 2000; Wardle et al., 2003; Bond-Lamberty et al., 2007)....

    [...]

01 Jan 2014
TL;DR: The authors analyzed the spatial history of Black Earth Rettenmund Prairie State Natural Area using a Geographical Information System (GIS) and an extended series of air photos, on-the-ground surveys, early maps, and land-use records.
Abstract: Black Earth Rettenmund Prairie State Natural Area, one of the highest quality prairie remnants in southern Wiscon- sin's Driftless Area, has been the target of extensive restoration efforts since it was acquired by The Nature Conservancy (TNC) in 1986. In the present work, I analyzed the spatial history of this prairie using a Geographical Information System (GIS) and an extended series of air photos, on-the-ground surveys, early maps, and land-use records. In 1937, when the first air photo was taken, the site was nearly devoid of trees and shrubs. In subsequent years, the site became progressively woody until at the time of purchase by TNC, it was over half covered by shrubs and trees. Maps and field notes made by TNC and the Wisconsin Department of Natural Resources (DNR) provided detailed information on the woody taxa at the time of acquisition. Quaking aspen (Popu- lus tremuloides), eastern cottonwood (P. deltoides), and sumac (Rhus glabra) were the dominant woody species. Stewardship files during more than 25 years of restoration work provided data on the effort expended. Tree and shrub removal and frequent prescribed burns were used to restore the prairie. Although these efforts led to substantial success, a legacy of the woody vegeta- tion remained, complicating restoration efforts. Sumac and gray dogwood (Cornus racemosa) are particularly troublesome, but brambles (Rubus sp.) and grape (Vitis sp.) also present problems. I used a Global Positioning System (GPS) to define boundaries of current woody areas and I found that they corresponded closely to the areas previously dominated by trees and shrubs.

2 citations


Cites background from "Fire suppression and ecosystem carb..."

  • ...The expansion of woody species into grasslands is generally attributed to a lack of fire or grazing, or climate change (Bragg and Hulbert 1976, Briggs et al. 2002, Tilman et al. 2000)....

    [...]

01 Jan 2003
TL;DR: The potential of forest soils to sequester carbon depends on many biotic and abiotic variables, such as: forest type, stand age and structure, root activity and turnover, temperature and moisture conditions, and soil physical, chemical, and biological properties as mentioned in this paper.
Abstract: The potential of forest soils to sequester carbon (C) depends on many biotic and abiotic variables, such as: forest type, stand age and structure, root activity and turnover, temperature and moisture conditions, and soil physical, chemical, and biological properties (Birdsey and Lewis, Chapter 2; Johnson and Kern, Chapter 4; Pregitzer, Chapter 6; Morris and Paul, Chapter 7). Of increasing interest to U.S. and global soil C sequestration scenarios is the impact various forest management practices, such as harvesting, site preparation, reforestation, drainage, and fertilization, have on soil C pools and cycling (Post, Chapter 12; Hoover, Chapter 14). A subject of many recent studies is the possible effect of higher atmospheric C02 levels on forest-soil C accumulations caused by increased tree growth, changing internal C allocations, and alteration of climate temperature and precipitation patterns (e.g., Caspersen et al., 2000). Projected climate change may also increase the incidence and severity of wildfires in some forest regions, which could have a major impact on soil C pools (Flannigan et al., 2000; Stocks et al., 2000).

1 citations

01 Aug 2006

1 citations


Cites background from "Fire suppression and ecosystem carb..."

  • ...This phenomenon has been attributed to fire suppression (Houghton et al. 2000, Tilman et al. 2000), over-grazing (Archer 1989), climate change (Brown et al. 1997), atmospheric CO2 enrichment (Polley et al. 2002), nitrogen deposition (Köchy & Wilson 2001), and a combination of two or more of these…...

    [...]

Book ChapterDOI
01 Jan 2014
TL;DR: A variety of reasons have led to the promotion of indigenous renewable energy sources and to an entirely new energy paradigm from fossil to renewable energy resources as mentioned in this paper, amongst others, the need for security and diversification of energy supplies as well as for less reliance on fossil fuels, the uncertainty surrounding oil prices, and increasing concerns over environmental degradation and climate effects.
Abstract: A variety of reasons have led to the promotion of indigenous renewable energy sources and to an entirely new energy paradigm from fossil to renewable energy resources. These include, amongst others, the need for security and diversification of energy supplies as well as for less reliance on fossil fuels, the uncertainty surrounding oil prices, and increasing concerns over environmental degradation and climate effects.

1 citations

References
More filters
Book
06 Mar 1997
TL;DR: In this paper, the authors present a perspective of the global cycle of nitrogen and phosphorous, the global water cycle, and the global sulfur cycle from a global point of view.
Abstract: Part 1 Processes and reactions: origins the atmosphere the lithosphere the terrestrial biosphere biogeochemical cycling on land biogeochemistry in freshwater wetlands and lakes rivers and estuaries the sea. Part 2 Global cycles: the global water cycle the global carbon cycle the global cycle of nitrogen and phosphorous the global sulfur cycle a perspective.

3,871 citations

Journal ArticleDOI
14 Jan 1994-Science
TL;DR: Slowing deforestation, combined with an increase in forestation and other management measures to improve forest ecosystem productivity, could conserve or sequester significant quantities of carbon.
Abstract: Forest systems cover more than 4.1 x 109 hectares of the Earth9s land area. Globally, forest vegetation and soils contain about 1146 petagrams of carbon, with approximately 37 percent of this carbon in low-latitude forests, 14 percent in mid-latitudes, and 49 percent at high latitudes. Over two-thirds of the carbon in forest ecosystems is contained in soils and associated peat deposits. In 1990, deforestation in the low latitudes emitted 1.6 ± 0.4 petagrams of carbon per year, whereas forest area expansion and growth in mid- and high-latitude forest sequestered 0.7 ± 0.2 petagrams of carbon per year, for a net flux to the atmosphere of 0.9 ± 0.4 petagrams of carbon per year. Slowing deforestation, combined with an increase in forestation and other management measures to improve forest ecosystem productivity, could conserve or sequester significant quantities of carbon. Future forest carbon cycling trends attributable to losses and regrowth associated with global climate and land-use change are uncertain. Model projections and some results suggest that forests could be carbon sinks or sources in the future.

3,175 citations


"Fire suppression and ecosystem carb..." refers background or methods in this paper

  • ...…biomass creates ;20–25% of annual anthropogenic CO2 (Andreae 1991, Schimel 1995), modifications of fire frequency may significantly change regional and global C budgets (e.g., Fahenstock and Agee 1983, Andreae 1991, Stocks 1991, Dixon and Krankina 1993, Dixon et al. 1994, Sohngen and Haynes 1997)....

    [...]

  • ...This work was supported by National Science Foundation Grant 9411972 and by the Andrew Mellon Foundation....

    [...]

  • ...Our work supports the proposal that increased fire suppression and decreased anthropogenic burning of vegetation could significantly influence global carbon dynamics (Dixon et al. 1994, Sampson and Clark 1995, Sohngen and Haynes 1997, San Jose et al. 1998)....

    [...]

  • ...Dixon et al. (1994) calculated that fire management in Russia could lead to long-term C storage of 0.6 3 1015 g C/yr....

    [...]

Journal ArticleDOI
TL;DR: The terrestrial biosphere plays an important role in the global carbon cycle as mentioned in this paper, which is the fluxes of carbon among four main reservoirs: fossil carbon, the atmosphere, the oceans, and the terrestrial Biosphere.
Abstract: The terrestrial biosphere plays an important role in the global carbon cycle. In the 1994 Intergovernmental Panel Assessment on Climate Change (IPCC), an effort was made to improve the quantification of terrestrial exchanges and potential feedbacks from climate, changing CO2, and other factors; this paper presents the key results from that assessment, together with expanded discussion. The carbon cycle is the fluxes of carbon among four main reservoirs: fossil carbon, the atmosphere, the oceans, and the terrestrial biosphere. Emissions of fossil carbon during the 1980s averaged 5.5 Gt y−1. During the same period, the atmosphere gained 3.2 Gt C y−1 and the oceans are believed to have absorbed 2.0 Gt C y−1. The regrowing forests of the Northern Hemisphere may have absorbed 0.5 Gt C y−1 during this period. Meanwhile, tropical deforestation is thought to have released an average 1.6 Gt C y−1 over the 1980s. While the fluxes among the four pools should balance, the average 198Ds values lead to a ‘missing sink’ of 1.4 Gt C y−1 Several processes, including forest regrowth, CO2 fertilization of plant growth (c. 1.0 Gt C y−1), N deposition (c. 0.6 Gt C y−1), and their interactions, may account for the budget imbalance. However, it remains difficult to quantify the influences of these separate but interactive processes. Uncertainties in the individual numbers are large, and are themselves poorly quantified. This paper presents detail beyond the IPCC assessment on procedures used to approximate the flux uncertainties. Lack of knowledge about positive and negative feedbacks from the biosphere is a major limiting factor to credible simulations of future atmospheric CO2 concentrations. Analyses of the atmospheric gradients of CO2 and 13 CO2 concentrations provide increasingly strong evidence for terrestrial sinks, potentially distributed between Northern Hemisphere and tropical regions, but conclusive detection in direct biomass and soil measurements remains elusive. Current regional-to-global terrestrial ecosystem models with coupled carbon and nitrogen cycles represent the effects of CO2 fertilization differently, but all suggest longterm responses to CO2 that are substantially smaller than potential leaf- or laboratory whole plant-level responses. Analyses of emissions and biogeochemical fluxes consistent with eventual stabilization of atmospheric CO2 concentrations are sensitive to the way in which biospheric feedbacks are modeled by c. 15%. Decisions about land use can have effects of 100s of Gt C over the next few centuries, with similarly significant effects on the atmosphere. Critical areas for future research are continued measurements and analyses of atmospheric data (CO2 and 13CO2) to serve as large-scale constraints, process studies of the scaling from the photosynthetic response to CO2 to whole-ecosystem carbon storage, and rigorous quantification of the effects of changing land use on carbon storage.

1,510 citations


"Fire suppression and ecosystem carb..." refers background or methods in this paper

  • ...2680 Key words: carbon storage; fire suppression; missing carbon; oak savanna....

    [...]

  • ...San Jose et al. (1998) calculated that fire suppression, by causing the transformation of the 2.8 3 107 ha Venezuelan Orinoco Llanos from grassland to semideciduous forest, could lead to a C sink of 0.08 3 1015 g C/yr....

    [...]

  • ...Atmospheric CO2 is currently accumulating at ;3.2 3 1015 g C/yr (Schimel 1995)....

    [...]

  • ...Dixon et al. (1994) calculated that fire management in Russia could lead to long-term C storage of 0.6 3 1015 g C/yr....

    [...]

  • ...Because the burning of ecosystem biomass creates ;20–25% of annual anthropogenic CO2 (Andreae 1991, Schimel 1995), modifications of fire frequency may significantly change regional and global C budgets (e.g., Fahenstock and Agee 1983, Andreae 1991, Stocks 1991, Dixon and Krankina 1993, Dixon et al.…...

    [...]

Journal ArticleDOI
TL;DR: The first edition of Schlesinger's Biogeochemistry in 1991 was an early entry in the field of Earth system science/global change, and has since gained sufficient popularity and demand to merit a second, extensively revised edition.
Abstract: Compared to the well-established disciplines, the field of Earth system science/global change has relatively few books from which to choose. Of the small subset of books dealing specifically with biogeochemical aspects of global change, the first edition of Schlesinger's Biogeochemistry in 1991 was an early entry. It has since gained sufficient popularity and demand to merit a second, extensively revised edition. The first part of the book provides a general introduction to biogeochemistry and cycles, and to the origin of elements, our planet, and life on Earth. It then describes the functioning and biogeochemistry of the atmosphere, lithosphere, biosphere, and hydrosphere, including marine and freshwater systems. Although system function and features are stressed, the author begins to introduce global change topics, such as soil organic matter and global change in Chapter 5, and landscape and mass balance in Chapter 6.

1,075 citations


"Fire suppression and ecosystem carb..." refers background or methods in this paper

  • ...This work was supported by National Science Foundation Grant 9411972 and by the Andrew Mellon Foundation....

    [...]

  • ...Moreover, the immense global extent of tropical savanna and woodland, 2.45 3 109 ha (Schlesinger 1997), suggests that even moderate fire suppression in this ecosystem type could provide a globally significant C sink....

    [...]

Journal ArticleDOI
23 Jul 1999-Science
TL;DR: The rates at which lands in the United States were cleared for agriculture, abandoned, harvested for wood, and burned were reconstructed from historical data for the period 1700-1990 and used in a terrestrial carbon model to calculate annual changes in the amount of carbon stored in terrestrial ecosystems, including wood products.
Abstract: The rates at which lands in the United States were cleared for agriculture, abandoned, harvested for wood, and burned were reconstructed from historical data for the period 1700-1990 and used in a terrestrial carbon model to calculate annual changes in the amount of carbon stored in terrestrial ecosystems, including wood products. Changes in land use released 27 +/- 6 petagrams of carbon to the atmosphere before 1945 and accumulated 2 +/- 2 petagrams of carbon after 1945, largely as a result of fire suppression and forest growth on abandoned farmlands. During the 1980s, the net flux of carbon attributable to land management offset 10 to 30 percent of U.S. fossil fuel emissions.

1,035 citations


"Fire suppression and ecosystem carb..." refers background or methods in this paper

  • ...Houghton et al. (1999) estimated various sources of C storage in the United States....

    [...]

  • ...Because fire suppression might lead to a period of C accumulation (Houghton et al. 1999), current fire suppression in the United States (Fig....

    [...]

  • ...This work was supported by National Science Foundation Grant 9411972 and by the Andrew Mellon Foundation....

    [...]

  • ...2680 Key words: carbon storage; fire suppression; missing carbon; oak savanna....

    [...]