scispace - formally typeset
Search or ask a question
Journal ArticleDOI

First-principles analysis of the optical properties of lead halide perovskite solution precursors.

29 Sep 2021-Physical Chemistry Chemical Physics (The Royal Society of Chemistry)-Vol. 23, Iss: 37, pp 21087-21096
TL;DR: In this paper, the electronic and optical properties of a set of charge-neutral compounds with chemical formula, PbX2(Sol)4, where X = Cl, Br, and I, and Sol are the six common solvents.
Abstract: Lead halide perovskites (LHPs) are promising materials for opto-electronics and photovoltaics, thanks to favorable characteristics and low manufacturing costs enabled by solution processing. In light of this, it is crucial to assess the impact of solvent–solute interactions on the electronic and optical properties of LHPs and of their solution precursors. In a first-principles work based on time-dependent density-functional theory coupled with the polarizable continuum model, we investigate the electronic and optical properties of a set of charge-neutral compounds with chemical formula, PbX2(Sol)4, where X = Cl, Br, and I, and Sol are the six common solvents. We find that single-particle energies and optical gaps depend on the halogen species as well as on the solvent molecules, which also affect the energy and the spatial distribution of the molecular orbitals, thereby impacting on the excitations. We clarify that dark states at the absorption onset are promoted by electron-withdrawing solvents, and we show the correlation between oscillator strength and HOMO → LUMO contribution to the excitations. Our results provide microscopic insight into the electronic and optical properties of LHP solution precursors, complementing ongoing experimental research on these systems and on their evolution to photovoltaic thin films.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , the authors studied the solution chemistry of a model indium halide system, methylammonium (MA)-In-Br, using a combination of the UV-vis spectroscopy, electrospray ionization mass spectrometry (ESI-MS) measurements, small-angle X-ray scattering (SAXS), and density functional theory (DFT) calculations.
Abstract: Recently, metal halide perovskites (MHPs) have emerged as a new class of materials for optical and electronic applications such as solar cells and ionizing radiation detectors. Although the solution-processability of MHPs is among their greatest advantages, the solution chemistries of most metal halide systems and their relationship with the observed structural and chemical diversity are poorly understood. In this work, we study the solution chemistry of a model indium halide system, methylammonium (MA)-In-Br, using a combination of the UV-vis spectroscopy, electrospray ionization mass spectrometry (ESI-MS) measurements, small-angle X-ray scattering (SAXS), and density functional theory (DFT) calculations. Our results show that indium could form either octahedral [InBr63-] or tetrahedral [InBr4-] anions in solution or a combination of both, depending on the loading ratios of MABr and InBr3 reactants. Understanding the solution chemistry of this system and recognizing the optical fingerprints of these polyanions allow for targeted crystallization of two novel compounds: MAInBr4 featuring tetrahedral [InBr4-] anions and MA2InBr5 containing both octahedral [InBr63-] and tetrahedral [InBr4-] anions. Further increase of the MABr content leads to the formation of previously reported MA4InBr7, containing only octahedral [InBr63-] anions separated by Br- anions. Our results suggest that understanding the solution chemistry of multinary metal halide systems could be a valuable tool for discovering functional materials for practical applications.

2 citations

Journal ArticleDOI
TL;DR: In this article , the structural, energetic, electronic, and optical properties of 14 tin iodide solution complexes formed by the SnI2 unit tetracoordinated with molecules of common solvents, which are classified according to their Gutmann's donor number, are investigated.
Abstract: The emerging interest in tin halide perovskites demands a robust understanding of the fundamental properties of these materials starting from the earliest steps of their synthesis. In a first-principles work based on time dependent density functional theory, we investigate the structural, energetic, electronic, and optical properties of 14 tin iodide solution complexes formed by the SnI2 unit tetracoordinated with molecules of common solvents, which we classify according to their Gutmann’s donor number. We find that all considered complexes are energetically stable and their formation energy expectedly increases with the donating ability of the solvent. The energies of the frontier states are affected by the choice of solvent, with their absolute values decreasing with the donor number. The occupied orbitals are predominantly localized on the tin iodide unit, while the unoccupied ones are distributed also on the solvent molecules. Owing to this partial wave function overlap, the first optical excitation is generally weak, although the spectral weight is red-shifted by the solvent molecules being coordinated to SnI2 in comparison to the reference obtained for this molecule alone. Comparisons with results obtained on the same level of theory on Pb-based counterparts corroborate our analysis. The outcomes of this study provide quantum-mechanical insight into the fundamental properties of tin iodide solution complexes. This knowledge is valuable in the research on lead-free halide perovskites and their precursors.
References
More filters
Journal ArticleDOI
TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Abstract: Generalized gradient approximations (GGA’s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. [S0031-9007(96)01479-2] PACS numbers: 71.15.Mb, 71.45.Gm Kohn-Sham density functional theory [1,2] is widely used for self-consistent-field electronic structure calculations of the ground-state properties of atoms, molecules, and solids. In this theory, only the exchange-correlation energy EXC › EX 1 EC as a functional of the electron spin densities n"srd and n#srd must be approximated. The most popular functionals have a form appropriate for slowly varying densities: the local spin density (LSD) approximation Z d 3 rn e unif

146,533 citations

Journal ArticleDOI
TL;DR: In this paper, the Hartree and Hartree-Fock equations are applied to a uniform electron gas, where the exchange and correlation portions of the chemical potential of the gas are used as additional effective potentials.
Abstract: From a theory of Hohenberg and Kohn, approximation methods for treating an inhomogeneous system of interacting electrons are developed. These methods are exact for systems of slowly varying or high density. For the ground state, they lead to self-consistent equations analogous to the Hartree and Hartree-Fock equations, respectively. In these equations the exchange and correlation portions of the chemical potential of a uniform electron gas appear as additional effective potentials. (The exchange portion of our effective potential differs from that due to Slater by a factor of $\frac{2}{3}$.) Electronic systems at finite temperatures and in magnetic fields are also treated by similar methods. An appendix deals with a further correction for systems with short-wavelength density oscillations.

47,477 citations

Journal ArticleDOI
TL;DR: The revised DFT-D method is proposed as a general tool for the computation of the dispersion energy in molecules and solids of any kind with DFT and related (low-cost) electronic structure methods for large systems.
Abstract: The method of dispersion correction as an add-on to standard Kohn-Sham density functional theory (DFT-D) has been refined regarding higher accuracy, broader range of applicability, and less empiricism. The main new ingredients are atom-pairwise specific dispersion coefficients and cutoff radii that are both computed from first principles. The coefficients for new eighth-order dispersion terms are computed using established recursion relations. System (geometry) dependent information is used for the first time in a DFT-D type approach by employing the new concept of fractional coordination numbers (CN). They are used to interpolate between dispersion coefficients of atoms in different chemical environments. The method only requires adjustment of two global parameters for each density functional, is asymptotically exact for a gas of weakly interacting neutral atoms, and easily allows the computation of atomic forces. Three-body nonadditivity terms are considered. The method has been assessed on standard benchmark sets for inter- and intramolecular noncovalent interactions with a particular emphasis on a consistent description of light and heavy element systems. The mean absolute deviations for the S22 benchmark set of noncovalent interactions for 11 standard density functionals decrease by 15%-40% compared to the previous (already accurate) DFT-D version. Spectacular improvements are found for a tripeptide-folding model and all tested metallic systems. The rectification of the long-range behavior and the use of more accurate C(6) coefficients also lead to a much better description of large (infinite) systems as shown for graphene sheets and the adsorption of benzene on an Ag(111) surface. For graphene it is found that the inclusion of three-body terms substantially (by about 10%) weakens the interlayer binding. We propose the revised DFT-D method as a general tool for the computation of the dispersion energy in molecules and solids of any kind with DFT and related (low-cost) electronic structure methods for large systems.

32,589 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-modelling procedure called "Continuum Methods within MD and MC Simulations 3072", which automates the very labor-intensive and therefore time-heavy and expensive process of integrating discrete and continuous components into a discrete-time model.
Abstract: 6.2.2. Definition of Effective Properties 3064 6.3. Response Properties to Magnetic Fields 3066 6.3.1. Nuclear Shielding 3066 6.3.2. Indirect Spin−Spin Coupling 3067 6.3.3. EPR Parameters 3068 6.4. Properties of Chiral Systems 3069 6.4.1. Electronic Circular Dichroism (ECD) 3069 6.4.2. Optical Rotation (OR) 3069 6.4.3. VCD and VROA 3070 7. Continuum and Discrete Models 3071 7.1. Continuum Methods within MD and MC Simulations 3072

13,286 citations

Journal ArticleDOI
TL;DR: In this article, a new hybrid exchange-correlation functional named CAM-B3LYP is proposed, which combines the hybrid qualities of B3LYP and the long-range correction presented by Tawada et al.

10,882 citations