scispace - formally typeset
Search or ask a question
Journal ArticleDOI

First signs of carbon sink saturation in European forest biomass

TL;DR: In this article, the authors call for a timely reaction from policymakers and forest managers to sustain European forests and thus the carbon sink, however there are early signs that the sink is saturating.
Abstract: Since the 1950s—after centuries of stock decline and deforestation—European forests started to recover, becoming a persistent carbon sink. The effect was projected to continue for decades, however there are early signs that the sink is saturating. This Perspective calls for a timely reaction from policymakers and forest managers to sustain European forests and thus the carbon sink.
Citations
More filters
Journal ArticleDOI
TL;DR: It is shown that forest disturbance damage in Europe has continued to increase in the first decade of the 21st century, and based on an ensemble of climate change scenarios it is found that damage from wind, bark beetles, and forest fires is likely to increase further in coming decades.
Abstract: Disturbances from wind, bark beetles, and wildfires have increased in Europe's forests throughout the 20th century 1. Climatic changes were identified as a main driver behind this increase 2, yet how the expected continuation of climate change will affect Europe's forest disturbance regime remains unresolved. Increasing disturbances could strongly impact the forest carbon budget 3,4, and are hypothesized to contribute to the recently observed carbon sink saturation in Europe's forests 5. Here we show that forest disturbance damage in Europe has continued to increase in the first decade of the 21st century. Based on an ensemble of climate change scenarios we find that damage from wind, bark beetles, and forest fires is likely to increase further in coming decades, and estimate the rate of increase to +0.91·106 m3 of timber per year until 2030. We show that this intensification can offset the effect of management strategies aiming to increase the forest carbon sink, and calculate the disturbance-related reduction of the carbon storage potential in Europe's forests to be 503.4 Tg C in 2021-2030. Our results highlight the considerable carbon cycle feedbacks of changing disturbance regimes, and underline that future forest policy and management will require a stronger focus on disturbance risk and resilience.

802 citations

Journal ArticleDOI
TL;DR: In this article, the authors bring together perspectives of various communities involved in the research and regulation of bioenergy deployment in the context of climate change mitigation: Land-use and energy experts, land use and integrated assessment modelers, human geographers, ecosystem researchers, climate scientists and two different strands of life-cycle assessment experts.
Abstract: Bioenergy deployment offers significant potential for climate change mitigation, but also carries considerable risks. In this review, we bring together perspectives of various communities involved in the research and regulation of bioenergy deployment in the context of climate change mitigation: Land-use and energy experts, land-use and integrated assessment modelers, human geographers, ecosystem researchers, climate scientists and two different strands of life-cycle assessment experts. We summarize technological options, outline the state-of-the-art knowledge on various climate effects, provide an update on estimates of technical resource potential and comprehensively identify sustainability effects. Cellulosic feedstocks, increased end-use efficiency, improved land carbon-stock management and residue use, and, when fully developed, BECCS appear as the most promising options, depending on development costs, implementation, learning, and risk management. Combined heat and power, efficient biomass cookstoves and small-scale power generation for rural areas can help to promote energy access and sustainable development, along with reduced emissions. We estimate the sustainable technical potential as up to 100EJ: high agreement; 100-300EJ: medium agreement; above 300EJ: low agreement. Stabilization scenarios indicate that bioenergy may supply from 10 to 245EJyr(-1) to global primary energy supply by 2050. Models indicate that, if technological and governance preconditions are met, large-scale deployment (>200EJ), together with BECCS, could help to keep global warming below 2 degrees degrees of preindustrial levels; but such high deployment of land-intensive bioenergy feedstocks could also lead to detrimental climate effects, negatively impact ecosystems, biodiversity and livelihoods. The integration of bioenergy systems into agriculture and forest landscapes can improve land and water use efficiency and help address concerns about environmental impacts. We conclude that the high variability in pathways, uncertainties in technological development and ambiguity in political decision render forecasts on deployment levels and climate effects very difficult. However, uncertainty about projections should not preclude pursuing beneficial bioenergy options.

550 citations


Cites background from "First signs of carbon sink saturati..."

  • ...How- ever, the sink capacity decreases as forests approach maturity (K€orner, 2006; Nabuurs et al., 2013; Smith, 2005)....

    [...]

  • ...However, the sink capacity decreases as forests approach maturity (K€ orner, 2006; Nabuurs et al., 2013; Smith, 2005)....

    [...]

  • ...…and provide a steady output of biomass for bioenergy and other forest products, resulting in continuous fossil substitution benefits also when the sink strength of the forest eventually saturates (Canadell & Raupach, 2008; Ciais et al., 2008; Lundmark et al., 2014; Nabuurs et al., 2007, 2013)....

    [...]

  • ...…disturbance may be preferable to intensive man- agement for wood output, while harvest of other mature forests that are at high risk of disturbance and have low productivity may be the best option, although involving an initial period (decades) of net losses in forest carbon (Nabuurs et al., 2013)....

    [...]

  • ...Intensive forest management activities of the early- to mid-20th century as well as other factors such as recov- ery from past overuse, have led to strong forest C-sinks in many OECD regions (Erb et al., 2013; Loudermilk et al., 2013; Nabuurs et al., 2013; Pan et al., 2011)....

    [...]

Journal ArticleDOI
27 Jan 2020
TL;DR: In this paper, the authors explore the potential of mid-rise urban buildings designed with engineered timber to provide long-term storage of carbon and to avoid the carbon-intensive production of mineral-based construction materials.
Abstract: The anticipated growth and urbanization of the global population over the next several decades will create a vast demand for the construction of new housing, commercial buildings and accompanying infrastructure. The production of cement, steel and other building materials associated with this wave of construction will become a major source of greenhouse gas emissions. Might it be possible to transform this potential threat to the global climate system into a powerful means to mitigate climate change? To answer this provocative question, we explore the potential of mid-rise urban buildings designed with engineered timber to provide long-term storage of carbon and to avoid the carbon-intensive production of mineral-based construction materials. Increasing urbanization will lead to a significant expansion of buildings and related infrastructure, major sources of greenhouse gas emissions. This Perspective discusses the possibility of constructing mid-rise urban buildings with engineered timber for long-term carbon storage and carbon emissions reduction.

339 citations

Journal ArticleDOI
TL;DR: A new processing method for analyzing spectral characteristic for high spatial resolution photogrammetric and hyperspectral images in forested environments, as well as for identifying individual anomalous trees, which will be of a high practical value for forest health management.
Abstract: Low-cost, miniaturized hyperspectral imaging technology is becoming available for small unmanned aerial vehicle (UAV) platforms. This technology can be efficient in carrying out small-area inspections of anomalous reflectance characteristics of trees at a very high level of detail. Increased frequency and intensity of insect induced forest disturbance has established a new demand for effective methods suitable in mapping and monitoring tasks. In this investigation, a novel miniaturized hyperspectral frame imaging sensor operating in the wavelength range of 500–900 nm was used to identify mature Norway spruce (Picea abies L. Karst.) trees suffering from infestation, representing a different outbreak phase, by the European spruce bark beetle (Ips typographus L.). We developed a new processing method for analyzing spectral characteristic for high spatial resolution photogrammetric and hyperspectral images in forested environments, as well as for identifying individual anomalous trees. The dense point clouds, measured using image matching, enabled detection of single trees with an accuracy of 74.7%. We classified the trees into classes of healthy, infested and dead, and the results were promising. The best results for the overall accuracy were 76% (Cohen’s kappa 0.60), when using three color classes (healthy, infested, dead). For two color classes (healthy, dead), the best overall accuracy was 90% (kappa 0.80). The survey methodology based on high-resolution hyperspectral imaging will be of a high practical value for forest health management, indicating a status of bark beetle outbreak in time.

288 citations


Cites background from "First signs of carbon sink saturati..."

  • ...Rapidly increasing forest disturbances give rise to a threat for forest health and substantial economic losses [8]....

    [...]

Journal ArticleDOI
TL;DR: In this article, an overview of biomass with carbon capture and storage (Bio-CCS or BECCS) at the systems level is provided, summarising the relevant information from the recent 5th Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), describes the progress made since earlier reports and considers additional results recently published in literature.

239 citations

References
More filters
Journal ArticleDOI
19 Aug 2011-Science
TL;DR: The total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks, with tropical estimates having the largest uncertainties.
Abstract: The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 ± 0.4 petagrams of carbon per year (Pg C year–1) globally for 1990 to 2007. We also estimate a source of 1.3 ± 0.7 Pg C year–1 from tropical land-use change, consisting of a gross tropical deforestation emission of 2.9 ± 0.5 Pg C year–1 partially compensated by a carbon sink in tropical forest regrowth of 1.6 ± 0.5 Pg C year–1. Together, the fluxes comprise a net global forest sink of 1.1 ± 0.8 Pg C year–1, with tropical estimates having the largest uncertainties. Our total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks.

4,948 citations

Journal ArticleDOI
11 Sep 2008-Nature
TL;DR: The results demonstrate that old-growth forests can continue to accumulate carbon, contrary to the long-standing view that they are carbon neutral, and suggest that 15 per cent of the global forest area, which is currently not considered when offsetting increasing atmospheric carbon dioxide concentrations, provides at least 10 per cent the global net ecosystem productivity.
Abstract: Old-growth forests remove carbon dioxide from the atmosphere at rates that vary with climate and nitrogen deposition. The sequestered carbon dioxide is stored in live woody tissues and slowly decomposing organic matter in litter and soil. Old-growth forests therefore serve as a global carbon dioxide sink, but they are not protected by international treaties, because it is generally thought that ageing forests cease to accumulate carbon. Here we report a search of literature and databases for forest carbon-flux estimates. We find that in forests between 15 and 800 years of age, net ecosystem productivity (the net carbon balance of the forest including soils) is usually positive. Our results demonstrate that old-growth forests can continue to accumulate carbon, contrary to the long-standing view that they are carbon neutral. Over 30 per cent of the global forest area is unmanaged primary forest, and this area contains the remaining old-growth forests. Half of the primary forests (6 times 10 8 hectares) are located in the boreal and temperate regions of the Northern Hemisphere. On the basis of our analysis, these forests alone sequester about 1.3 plusminus 0.5 gigatonnes of carbon per year. Thus, our findings suggest that 15 per cent of the global forest area, which is currently not considered when offsetting increasing atmospheric carbon dioxide concentrations, provides at least 10 per cent of the global net ecosystem productivity. Old-growth forests accumulate carbon for centuries and contain large quantities of it. We expect, however, that much of this carbon, even soil carbon, will move back to the atmosphere if these forests are disturbed

1,532 citations

01 Jul 2007
TL;DR: The fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) provides a comprehensive, state-of-the-art and worldwide overview of scientific knowledge related to the mitigation of climate change as discussed by the authors.
Abstract: This volume of the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) provides a comprehensive, state-of-the-art and worldwide overview of scientific knowledge related to the mitigation of climate change. It includes a detailed assessment of costs and potentials of mitigation technologies and practices, implementation barriers, and policy options for the sectors: energy supply, transport, buildings, industry, agriculture, forestry and waste management. It links sustainable development policies with climate change practices. This volume will again be the standard reference for all those concerned with climate change. Contents: Foreword; Preface; Summary for policymakers; Technical Summary; 1. Introduction; 2. Framing issues; 3. Issues related to mitigation in the long term context; 4. Energy supply; 5. Transport and its infrastructure; 6. Residential and commercial buildings; 7. Industry; 8. Agriculture; 9. Forestry; 10. Waste management; 11. Mitigation from a cross sectoral perspective; 12. Sustainable development and mitigation; 13. Policies, instruments and co-operative agreements. 300 figs., 50 tabs., 3 annexes.

1,073 citations

Journal ArticleDOI
TL;DR: In this article, an overview of the role of natural disturbances in European forests from 1850 to 2000 is presented, which provides a basis for modelling the possible impacts of climate change and enables one to assess trends in disturbance regimes in different countries and/or periods.
Abstract: This paper, based on a literature review, presents a quantitative overview of the role of natural disturbances in European forests from 1850 to 2000. Such an overview provides a basis for modelling the possible impacts of climate change and enables one to assess trends in disturbance regimes in different countries and/or periods. Over the period 1950–2000, an annual average of 35 million m3 wood was damaged by disturbances; there was much variation between years. Storms were responsible for 53% of the total damage, fire for 16%, snow for 3% and other abiotic causes for 5%. Biotic factors caused 16% of the damage, and half of this was caused by bark beetles. For 7% of the damage, no cause was given or there was a combination of causes. The 35 million m3 of damage is about 8.1% of the total fellings in Europe and about 0.15% of the total volume of growing stock. Over the period 1961–2000, the average annual area of forest fires was 213 000 ha, which is 0.15% of the total forest area in Europe. Most types of damage seem to be increasing. This is partly an artefact of the improved availability of information. The most likely explanations for an increase in damage from disturbances are changes in forest management and resulting changes in the condition of the forest. Forest area, average volume of growing stock and average stand age have increased considerably, making the forest more vulnerable and increasing the resources that can be damaged. Since forest resources are expected to continue to increase, it is likely that damage from disturbances will also increase in future.

883 citations

Related Papers (5)