scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Flavonoid from Carica papaya inhibits NS2B-NS3 protease and prevents Dengue 2 viral assembly.

11 Nov 2013-Bioinformation (Biomedical Informatics Publishing Group)-Vol. 9, Iss: 18, pp 889-895
TL;DR: The flavonoid quercetin with highest binding energy against NS2B-NS3 protease which is evident by the formation of six hydrogen bonds with the amino acid residues at the binding site of the receptor is found.
Abstract: Dengue virus belongs to the virus family Flaviviridae. Dengue hemorrhagic disease caused by dengue virus is a public health problem worldwide. The viral non structural 2B and 3 (NS2B-NS3) protease complex is crucial for virus replication and hence, it is considered to be a good anti-viral target. Leaf extracts from Carica papaya is generally prescribed for patients with dengue fever, but there are no scientific evidences for its anti-dengue activity; hence we intended to investigate the anti-viral activity of compounds present in the leaves of Carica papaya against dengue 2 virus (DENV-2). We analysed the anti-dengue activities of the extracts from Carica papaya by using bioinformatics tools. Interestingly, we find the flavonoid quercetin with highest binding energy against NS2B-NS3 protease which is evident by the formation of six hydrogen bonds with the amino acid residues at the binding site of the receptor. Our results suggest that the flavonoids from Carica papaya have significant anti-dengue activities. Abbreviations ADME - Absorption, distribution, metabolism and excretion, BBB - Blood brain barrier, CYP - Cytochrome P450, DENV - – Dengue virus, DHF - Dengue hemorrhagic fever, DSS - Dengue shock syndrome, GCMS - – Gas chromatography- Mass spectrometry, MOLCAD - Molecular Computer Aided Design, NS - Non structural, PDB - Protein data bank, PMF - Potential Mean Force.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors focused on the findings of current studies of the health-promoting aspects of Moringa and extract-related flavonoids on NCDs, particularly cancer, diabetes and obesity.

99 citations

Journal ArticleDOI
TL;DR: The aim of the present review is to summarize the data collected over the last five to six years on the mechanisms of the interactions of CYP with food constituents that occur via the direct binding of polyphenols to the enzymes and the mechanism of the regulation of CYp gene expression mediated by polyphenol.
Abstract: Cytochromes P450 (CYPs) are a large group of hemeproteins located on mitochondrial membranes or the endoplasmic reticulum They play a crucial role in the metabolism of endogenous and exogenous molecules The activity of CYP is associated with a number of factors including redox potential, protein conformation, the accessibility of the active site by substrates, and others This activity may be potentially modulated by a variety of small molecules Extensive experimental data collected over the past decade point at the active role of natural polyphenols in modulating the catalytic activity of CYP Polyphenols are widespread micronutrients present in human diets of plant origin and in medicinal herbs These compounds may alter the activity of CYP either via direct interactions with the enzymes or by affecting CYP gene expression The polyphenol–CYP interactions may significantly alter the pharmacokinetics of drugs and thus influence the effectiveness of chemical therapies used in the treatment of different

61 citations

Journal ArticleDOI
TL;DR: Quercetin and fisetin down-regulate the production of proinflammatory cytokines induced by DENV infection enhanced by antibodies a mechanism involved in severe dengue.
Abstract: Background: There is a lack of specific antiviral therapy against dengue virus (DENV) in current use. Therefore, a great proportion of dengue cases progress to severe clinical forms due to a complex interplay between virus and host immune response. It has been hypothesized that heterotypic non-neutralizing antibodies enhance DENV infection in phagocytic cells, and this induces an inflammatory response that is involved in the pathogenesis of severe dengue. Purpose: To identify the antiviral and immunomodulatory effects of polyphenols on dengue virus infection. Methods: Human U937-DC-SIGN macrophages were infected with DENV serotypes 2 or 3 in the presence or not of enhancing antibody 4G2. Viral titers and the secretion of tumor necrosis factor-alpha, IL-6, IL-10 and interferon-alpha were analyzed timely. Results: DENV infection alone induced high production of IL-6 and TNF-α, but in the presence of 4G2 antibody, viral titers and TNF-α secretion were potentiated. Based on anti-inflammatory antecedents, the polyphenols curcumin, fisetin, resveratrol, apigenin, quercetin and rutin were tested for antiviral and immunomodulatory properties. Only quercetin and fisetin inhibited DENV-2 and DENV-3 infection in the absence or presence of enhancing antibody (>90%, p<0.001); they also inhibited TNF-α and IL-6 secretion (p<0.001). Conclusion: Quercetin and fisetin down-regulate the production of proinflammatory cytokines induced by DENV infection enhanced by antibodies a mechanism involved in severe dengue.

60 citations

Journal ArticleDOI
TL;DR: Five out of nine phytochemicals are reported for the first time as novel DENV inhibitors.
Abstract: Background & objectives: Dengue fever, caused by dengue virus (DENV), has become a serious threat to human lives. Phytochemicals are known to have great potential to eradicate viral, bacterial and fungal-borne diseases in human beings. This study was aimed at in silico drug development against nonstructural protein 4B (NS4B) of dengue virus 4 (DENV4). Methods: A total of 2750 phytochemicals from different medicinal plants were selected for this study. These plants grow naturally in the climate of Pakistan and India and have been used for the treatment of various pathologies in human for long-time. The ADMET studies, molecular docking and density functional theory (DFT) based analysis were carried out to determine the potential inhibitory properties of these phytochemicals. Results: The ADMET analysis and docking results revealed nine phytochemicals, i.e. Silymarin, Flavobion, Derrisin, Isosilybin, Mundulinol, Silydianin, Isopomiferin, Narlumicine and Oxysanguinarine to have potential inhibitory properties against DENV and can be considered for additional in vitro and in vivo studies to assess their inhibitory effects against DENV replication. They exhibited binding affinity ≥−8 kcal/mol against DENV4-NS4B. Furthermore, DFT based analysis revealed high reactivity for these nine phytochemicals in the binding pocket of DENV4-NS4B, based on ELUMO, EHOMO and band energy gap. Interpretation & conclusion: Five out of nine phytochemicals are reported for the first time as novel DENV inhibitors. These included three phytochemicals from Silybum marianum, i.e. Derrisin, Mundulinol, Isopomiferin, and two phytochemicals from Fumaria indica, i.e. Narlumicine and Oxysanguinarine. However, all the nine phytochemicals can be considered for in vitro and in vivo analysis for the development of potential DENV inhibitors.

48 citations

References
More filters
Journal ArticleDOI
TL;DR: The goals of the PDB are described, the systems in place for data deposition and access, how to obtain further information and plans for the future development of the resource are described.
Abstract: The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and near-term plans for the future development of the resource.

34,239 citations

Journal ArticleDOI
TL;DR: Experimental and computational approaches to estimate solubility and permeability in discovery and development settings are described in this article, where the rule of 5 is used to predict poor absorption or permeability when there are more than 5 H-bond donors, 10 Hbond acceptors, and the calculated Log P (CLogP) is greater than 5 (or MlogP > 415).

14,026 citations

Journal ArticleDOI
25 Apr 2013-Nature
TL;DR: These new risk maps and infection estimates provide novel insights into the global, regional and national public health burden imposed by dengue and will help to guide improvements in disease control strategies using vaccine, drug and vector control methods, and in their economic evaluation.
Abstract: Dengue is a systemic viral infection transmitted between humans by Aedes mosquitoes. For some patients, dengue is a life-threatening illness. There are currently no licensed vaccines or specific therapeutics, and substantial vector control efforts have not stopped its rapid emergence and global spread. The contemporary worldwide distribution of the risk of dengue virus infection and its public health burden are poorly known. Here we undertake an exhaustive assembly of known records of dengue occurrence worldwide, and use a formal modelling framework to map the global distribution of dengue risk. We then pair the resulting risk map with detailed longitudinal information from dengue cohort studies and population surfaces to infer the public health burden of dengue in 2010. We predict dengue to be ubiquitous throughout the tropics, with local spatial variations in risk influenced strongly by rainfall, temperature and the degree of urbanization. Using cartographic approaches, we estimate there to be 390 million (95% credible interval 284-528) dengue infections per year, of which 96 million (67-136) manifest apparently (any level of disease severity). This infection total is more than three times the dengue burden estimate of the World Health Organization. Stratification of our estimates by country allows comparison with national dengue reporting, after taking into account the probability of an apparent infection being formally reported. The most notable differences are discussed. These new risk maps and infection estimates provide novel insights into the global, regional and national public health burden imposed by dengue. We anticipate that they will provide a starting point for a wider discussion about the global impact of this disease and will help to guide improvements in disease control strategies using vaccine, drug and vector control methods, and in their economic evaluation.

7,238 citations

Journal ArticleDOI
TL;DR: A simple empirical scoring function designed to estimate the free energy of binding for aprotein–ligand complex when the 3D structure of the complex is known or can be approximated and it is compared to approaches by other workers.
Abstract: This paper describes the development of a simple empirical scoring function designed to estimate the free energy of binding for a protein-ligand complex when the 3D structure of the complex is known or can be approximated. The function uses simple contact terms to estimate lipophilic and metal-ligand binding contributions, a simple explicit form for hydrogen bonds and a term which penalises flexibility. The coefficients of each term are obtained using a regression based on 82 ligand-receptor complexes for which the binding affinity is known. The function reproduces the binding affinity of the complexes with a cross-validated error of 8.68 kJ/mol. Tests on internal consistency indicate that the coefficients obtained are stable to changes in the composition of the training set. The function is also tested on two test sets containing a further 20 and 10 complexes, respectively. The deficiencies of this type of function are discussed and it is compared to approaches by other workers.

1,642 citations

Journal ArticleDOI
TL;DR: This work reports results based on software using a genetic algorithm that uses an evolutionary strategy in exploring the full conformational flexibility of the ligand with partial flexibility ofThe protein, and which satisfies the fundamental requirement that theligand must displace loosely bound water on binding.

1,522 citations

Related Papers (5)