scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Flavopiridol Induces Apoptosis of Normal Lymphoid Cells, Causes Immunosuppression, and Has Potent Antitumor Activity In Vivo Against Human Leukemia and Lymphoma Xenografts

TL;DR: It is concluded that flavopiridol greatly influences apoptosis in both normal and malignant hematopoietic tissues, and provides compelling evidence for the use of flavopirs in human hematologic malignancies.
About: This article is published in Blood.The article was published on 1998-04-01 and is currently open access. It has received 248 citations till now. The article focuses on the topics: Alvocidib & Leukemia.
Citations
More filters
Journal ArticleDOI
TL;DR: The role of cell cycle proteins in cancer, the rationale for targeting them in cancer treatment and results of clinical trials, as well as the future therapeutic potential of various cell cycle inhibitors are discussed.
Abstract: Cancer is characterized by uncontrolled tumour cell proliferation resulting from aberrant activity of various cell cycle proteins. Therefore, cell cycle regulators are considered attractive targets in cancer therapy. Intriguingly, animal models demonstrate that some of these proteins are not essential for proliferation of non-transformed cells and development of most tissues. By contrast, many cancers are uniquely dependent on these proteins and hence are selectively sensitive to their inhibition. After decades of research on the physiological functions of cell cycle proteins and their relevance for cancer, this knowledge recently translated into the first approved cancer therapeutic targeting of a direct regulator of the cell cycle. In this Review, we focus on proteins that directly regulate cell cycle progression (such as cyclin-dependent kinases (CDKs)), as well as checkpoint kinases, Aurora kinases and Polo-like kinases (PLKs). We discuss the role of cell cycle proteins in cancer, the rationale for targeting them in cancer treatment and results of clinical trials, as well as the future therapeutic potential of various cell cycle inhibitors.

1,250 citations

Journal ArticleDOI
TL;DR: Current work is focusing on overcoming pharmacokinetic barriers that hindered development of flavopiridol, a pan-cdk inhibitor, as well as assessing novel classes of compounds potently targeting groups of cell cycle cdks (cdk4/6 or cdk2/1) with variable effects on the transcriptional cdks 7 and 9.
Abstract: Cyclin-dependent kinases (cdks) are critical regulators of cell cycle progression and RNA transcription. A variety of genetic and epigenetic events cause universal overactivity of the cell cycle cdks in human cancer, and their inhibition can lead to both cell cycle arrest and apoptosis. However, built-in redundancy may limit the effects of highly selective cdk inhibition. Cdk4/6 inhibition has been shown to induce potent G1 arrest in vitro and tumor regression in vivo; cdk2/1 inhibition has the most potent effects during the S and G2 phases and induces E2F transcription factor-dependent cell death. Modulation of cdk2 and cdk1 activities also affects survival checkpoint responses after exposure to DNA-damaging and microtubule-stabilizing agents. The transcriptional cdks phosphorylate the carboxy-terminal domain of RNA polymerase II, facilitating efficient transcriptional initiation and elongation. Inhibition of these cdks primarily affects the accumulation of transcripts with short half-lives, including those encoding antiapoptosis family members, cell cycle regulators, as well as p53 and nuclear factor-kappa B-responsive gene targets. These effects may account for apoptosis induced by cdk9 inhibitors, especially in malignant hematopoietic cells, and may also potentiate cytotoxicity mediated by disruption of a variety of pathways in many transformed cell types. Current work is focusing on overcoming pharmacokinetic barriers that hindered development of flavopiridol, a pan-cdk inhibitor, as well as assessing novel classes of compounds potently targeting groups of cell cycle cdks (cdk4/6 or cdk2/1) with variable effects on the transcriptional cdks 7 and 9. These efforts will establish whether the strategy of cdk inhibition is able to produce therapeutic benefit in the majority of human tumors.

945 citations


Cites background from "Flavopiridol Induces Apoptosis of N..."

  • ...administration designed to achieve high micromolar concentrations, which led to cures of lymphoma xenografts.(155) This prompted the...

    [...]

Journal ArticleDOI
TL;DR: Modulation of cdk activity is an attractive target for cancer chemotherapy, and several agents that modulatecdk activity are in or are approaching entry into clinical trials.
Abstract: In the last decade, the discovery and cloning of the cyclin-dependent kinases (cdks), key regulators of cell cycle progression, have led to the identification of novel modulators of cdk activity. Initial experimental results demonstrated that these cdk modulators are able to block cell cycle progression, induce apoptotic cell death, promote differentiation, inhibit angiogenesis, and modulate transcription. Alteration of cdk activity may occur indirectly by affecting upstream pathways that regulate cdk activity or directly by targeting the cdk holoenzyme. Two direct cdk modulators, flavopiridol and UCN-01, are showing promising results in early clinical trials, in which the drugs reach plasma concentrations that can alter cdk activity in vitro. Although modulation of cdk activity is a well-grounded concept and new cdk modulators are being assessed for clinical testing, important scientific questions remain to be addressed. These questions include whether one or more cdks should be inhibited, how cdk inhibitors should be combined with other chemotherapy agents, and which cdk substrates should be used to assess the biologic effects of these drugs in patients. Thus, modulation of cdk activity is an attractive target for cancer chemotherapy, and several agents that modulate cdk activity are in or are approaching entry into clinical trials.

521 citations

Journal ArticleDOI
TL;DR: This review serves as one guide for the virtual screening of libraries containing halogenated drugs and their structural and pharmacological features and may be a source of inspiration for the medicinal chemists.
Abstract: A significant number of drugs and drug candidates in clinical development are halogenated structures. For a long time, insertion of halogen atoms on hit or lead compounds was predominantly performed to exploit their steric effects, through the ability of these bulk atoms to occupy the binding site of molecular targets. However, halogens in drug - target complexes influence several processes rather than steric aspects alone. For example, the formation of halogen bonds in ligand-target complexes is now recognized as a kind of intermolecular interaction that favorably contributes to the stability of ligand-target complexes. This paper is aimed at introducing the fascinating versatility of halogen atoms. It starts summarizing the prevalence of halogenated drugs and their structural and pharmacological features. Next, we discuss the identification and prediction of halogen bonds in protein-ligand complexes, and how these bonds should be exploited. Interesting results of halogen insertions during the processes of hit-to-lead or lead-to-drug conversions are also detailed. Polyhalogenated anesthetics and protein kinase inhibitors that bear halogens are analyzed as cases studies. Thereby, this review serves as one guide for the virtual screening of libraries containing halogenated compounds and may be a source of inspiration for the medicinal chemists.

503 citations

Journal ArticleDOI
TL;DR: This review summarizes the different functions of the proteins presently known to control both apoptosis and cell cycle progression and suggests that these important decisions of cell proliferation or cell death are likely to be controlled by more than one signal and are necessary to ensure a proper cellular response.
Abstract: Apoptosis and proliferation are intimately coupled. Some cell cycle regulators can influence both cell division and programmed cell death. The linkage of cell cycle and apoptosis has been recognized for c-Myc, p53, pRb, Ras, PKA, PKC, Bcl-2, NF-kappa B, CDK, cyclins and CKI. This review summarizes the different functions of the proteins presently known to control both apoptosis and cell cycle progression. These proteins can influence apoptosis or proliferation but different variables, including cell type, cellular environment and genetic background, make it difficult to predict the outcome of cell proliferation, cell cycle arrest or cell death. These important decisions of cell proliferation or cell death are likely to be controlled by more than one signal and are necessary to ensure a proper cellular response.

424 citations


Cites result from "Flavopiridol Induces Apoptosis of N..."

  • ...Our own data, in addition to those of others, show induction of apoptosis in haematopoietic cells in association with CDK inhibition (Arguello et al. 1998; Byrd et al. 1998; Vermeulen et al. 2002a,b)....

    [...]

References
More filters
Journal ArticleDOI
09 Mar 1995-Nature
TL;DR: The activity of cyclin-dependent kinases is controlled by four highly conserved biochemical mechanisms, forming a web of regulatory pathways unmatched in its elegance and intricacy.
Abstract: As key regulators of the cell cycle, the cyclin-dependent kinases must be tightly regulated by extra- and intracellular signals. The activity of cyclin-dependent kinases is controlled by four highly conserved biochemical mechanisms, forming a web of regulatory pathways unmatched in its elegance and intricacy.

3,279 citations

Journal ArticleDOI
TL;DR: It is suggested that identification of the gene products which couple the stimulus to the response, and so determine intrinsic cellular sensitivity (and resistance), will be important targets for new types of drugs which might allow responses to occur in the major cancers of man, which are chemoresistant.
Abstract: Most of the cytotoxic anticancer drugs in current use have been shown to induce apoptosis in susceptible cells. The fact that disparate agents, which interact with different targets, induce cell death with some common features (endonucleolytic cleavage of DNA, changes in chromatin condensation) suggests that cytotoxicity is determined by the ability of the cell to engage this so-called 'programmed' cell death. The mechanism of the coupling of a stimulus (drug-target interaction) to a response (cell death) is not known, but modulation of this coupling may affect the outcome of drug treatment. This review surveys the recent evidence which supports the idea that the drug-target interaction per se is not the sole determinant of cellular sensitivity of cytotoxic drugs. Studies of the signals which might engage apoptosis, the genes which modulate it and the biochemical process of drug-induced apoptosis itself are described, where possible, for glucocorticoids, topoisomerase inhibitors, alkylating agents, antimetabolites and antihormones. It is suggested that identification of the gene products which couple the stimulus to the response, and so determine intrinsic cellular sensitivity (and resistance), will be important targets for new types of drugs. These might then allow responses to occur in the major cancers of man, which are chemoresistant.

836 citations

Journal ArticleDOI
24 Jan 1997-Science
TL;DR: The interaction of NF-κB and CDKs through the p300 and CBP coactivators provides a mechanism for the coordination of transcriptional activation with cell cycle progression.
Abstract: The nuclear factor κB (NF-κB) transcription factor is responsive to specific cytokines and stress and is often activated in association with cell damage and growth arrest in eukaryotes. NF-κB is a heterodimeric protein, typically composed of 50- and 65-kilodalton subunits of the Rel family, of which RelA(p65) stimulates transcription of diverse genes. Specific cyclin-dependent kinases (CDKs) were found to regulate transcriptional activation by NF-κB through interactions with the coactivator p300. The transcriptional activation domain of RelA(p65) interacted with an amino-terminal region of p300 distinct from a carboxyl-terminal region of p300 required for binding to the cyclin E-Cdk2 complex. The CDK inhibitor p21 or a dominant negative Cdk2, which inhibited p300-associated cyclin E-Cdk2 activity, stimulated κB-dependent gene expression, which was also enhanced by expression of p300 in the presence of p21. The interaction of NF-κB and CDKs through the p300 and CBP coactivators provides a mechanism for the coordination of transcriptional activation with cell cycle progression.

754 citations

Journal Article
TL;DR: Inhibition of the CDK4 and/or CDK2 kinase activity by Flavopiridol can account for the G1 arrest observed after exposure to FlavopIRidol.
Abstract: Flavopiridol (L86-8275), a N-methylpiperidinyl, chlorophenyl flavone, can inhibit cell cycle progression in either G1 or G2 and is a potent cyclin-dependent kinase (CDK) 1 inhibitor. In this study, we used MCF-7 breast carcinoma cells that are wild type for p53 and pRb positive and contain CDK4-cyclin D1 and MDA-MB-468 breast carcinoma cells that are mutant p53, pRb negative, and lack CDK4-cyclin D1 to investigate the G1 arrest produced by Flavopiridol. Recombinant CDK4-cyclin D1 was inhibited potently by Flavopiridol (Kiapp, 65 nM), competitive with respect to ATP. Surprisingly, CDK4 immunoprecipitates derived from Flavopiridol-treated MCF-7 cells (3 h, 300 nM Flavonolpiridol) had an approximately 3-fold increased kinase activity compared with untreated cells. Cyclin D and CDK4 levels were not different at 3 hr, but cyclin D levels and CDK4 kinase activity decreased thereafter. The phosphorylation state of pRb was shifted from hypercoincident to hypocoincident with the development of G1 arrest. Asynchronous MDA-MB-468 cells were inhibited in cell cycle progression at both G1 and G2 by Flavopiridol. Flavopiridol inhibited the in vitro kinase activity of CDK2 using an immune complex kinase assay (IC50, 100 nM at 400 microM ATP). Immunoprecipitated CDK2 kinase activity from either MCF-7 or MDA-MB-468 cells exposed to Flavopiridol (300 nM) for increasing time showed an initial increased activity (approximately 1.5-fold at 3 h) compared with untreated cells, followed by a loss of kinase activity to immeasurable levels by 24 h. This increased immunoprecipitated kinase activity was dependent on the Flavopiridol concentration added to intact cells and was associated with a reduction of CDK2 tyrosine phosphorylation. Cyclin E and A levels were not altered to the same extent as cyclin D, and neither CDK4 nor CDK2 levels were changed in response to Flavopiridol. Inhibition of the CDK4 and/or CDK2 kinase activity by Flavopiridol can therefore account for the G1 arrest observed after exposure to Flavopiridol.

545 citations

Journal ArticleDOI
TL;DR: The analysis of the position of this phenyl ring not only explains the great differences of kinase inhibition among the flavonoid inhibitors but also explains the specificity of L868276 to inhibit CDK2 and CDC2.
Abstract: The central role of cyclin-dependent kinases (CDKs) in cell cycle regulation makes them a promising target for studying inhibitory molecules that can modify the degree of cell proliferation. The discovery of specific inhibitors of CDKs such as polyhydroxylated flavones has opened the way to investigation and design of antimitotic compounds. A novel flavone, (-)-cis-5,7-dihydroxyphenyl-8-[4-(3-hydroxy-1-methyl)piperidinyl] -4H-1-benzopyran-4-one hydrochloride hemihydrate (L868276), is a potent inhibitor of CDKs. A chlorinated form, flavopiridol, is currently in phase I clinical trials as a drug against breast tumors. We determined the crystal structure of a complex between CDK2 and L868276 at 2.33 angstroms resolution and refined to an Rfactor 20.3%. The aromatic portion of the inhibitor binds to the adenine-binding pocket of CDK2, and the position of the phenyl group of the inhibitor enables the inhibitor to make contacts with the enzyme not observed in the ATP complex structure. The analysis of the position of this phenyl ring not only explains the great differences of kinase inhibition among the flavonoid inhibitors but also explains the specificity of L868276 to inhibit CDK2 and CDC2.

461 citations

Related Papers (5)