scispace - formally typeset
Journal ArticleDOI: 10.1039/D0TB02451A

Flexible temperature sensors based on carbon nanomaterials.

04 Mar 2021-Journal of Materials Chemistry B (The Royal Society of Chemistry)-Vol. 9, Iss: 8, pp 1941-1964
Abstract: Flexible temperature sensors can be attached to the surface of human skin or curved surfaces directly for continuous and stable data measurements, and have attracted extensive attention in myriad areas. Carbon nanomaterials possess great potential for temperature sensing, and flexible temperature sensors based on carbon nanomaterials have demonstrated unique advantages such as high sensitivity, fast response, good mechanical adaptability, low-cost fabrication processes, high cycling stability and reliability. In this review, the working mechanisms, device structures, material compositions, fabrication technologies, temperature sensing properties, the crucial roles of carbon nanomaterials, specific advantages and existing limitations of different types of flexible temperature sensors based on carbon nanomaterials are comprehensively elaborated and discussed. Based on recent advances, conclusions are made and challenges as well as future perspectives are systematically outlined and discussed.

... read more

Citations
  More

6 results found


Open accessJournal ArticleDOI: 10.3390/MI12030308
15 Mar 2021-Micromachines
Abstract: Antibiotics can accumulate through food metabolism in the human body which may have a significant effect on human safety and health. It is therefore highly beneficial to establish easy and sensitive approaches for rapid assessment of antibiotic amounts. In the development of next-generation biosensors, nanomaterials (NMs) with outstanding thermal, mechanical, optical, and electrical properties have been identified as one of the most hopeful materials for opening new gates. This study discusses the latest developments in the identification of antibiotics by nanomaterial-constructed biosensors. The construction of biosensors for electrochemical signal-transducing mechanisms has been utilized in various types of nanomaterials, including quantum dots (QDs), metal-organic frameworks (MOFs), magnetic nanoparticles (NPs), metal nanomaterials, and carbon nanomaterials. To provide an outline for future study directions, the existing problems and future opportunities in this area are also included. The current review, therefore, summarizes an in-depth assessment of the nanostructured electrochemical sensing method for residues of antibiotics in different systems.

... read more

10 Citations


Open accessJournal ArticleDOI: 10.1016/J.SINTL.2021.100110
Mohd Javaid1, Abid Haleem1, Ravi Pratap Singh2, Shanay Rab1  +1 moreInstitutions (3)
01 Jan 2021-
Abstract: Sensors play a crucial role in factory automation in making the system intellectual. Different types of sensors are available as per the suitability and applications; some of them are produced in mass and available in the market at affordable costs. The standard sensor types available are position sensors, pressure sensors, flow sensors, temperature sensors, and force sensors. They are used in many sectors, such as motorsport, medical, industry, aerospace, agriculture, and daily life. The objective of Industry 4.0 is to increase efficiency through automation. Sensors are vital components of Industry 4.0, allowing several transitions such as changes in positions, length, height, external and dislocations in industrial production facilities to be detected, measured, analysed, and processed. Smart factories will also enhance sustainability by tracking real-time output, and automated control systems will minimise potential factory maintenance costs. It can also be seen that digitalisation can improve production mobility, which gives advanced manufacturing firms a competitive advantage. This paper discusses sensors and their various types, along with significant capabilities for manufacturing. The step-by-step working Blocks and Quality Services of Sensors during implementation in Industry 4.0 are elaborated diagrammatically. Finally, we identified thirteen significant applications of sensors for Industry 4.0. Industry 4.0 provides an excellent opportunity for the development of the sensor market across the globe. In Industry 4.0, sensors will enjoy higher acceptance rates and benefit from a fully enabled connecting and data exchange and logistics integration. In the coming years, sensor installations may grow in process management, automated production lines, and digital supply chains.

... read more

Topics: Industry 4.0 (54%), Advanced manufacturing (53%), Automation (52%)

7 Citations


Journal ArticleDOI: 10.1016/J.SAA.2021.120202
Abstract: Due to the crucial role of dopamine (DA) in health and peripheral nervous systems, it is particularly important to develop an efficient and accurate sensor to monitor and determine DA concentrations for diagnostic purposes and diseases prevention. Up to now, using surface plasmon resonance (SPR) sensors in DA determination is very limited and its application still at the primary stage. In this work, a simple and ultra-sensitive SPR sensor was constructed for DA detection by preparation of chitosan- graphene quantum dots (CS-GQDs) thin film as the sensing layer. Other SPR measurements were conducted using different sensing layers; GQDs, CS for comparison. The proposed thin films were prepared by spin coating technique. The developed CS-GQDs thin film-based SPR sensor was successfully tested in DA concentration range from 0 fM to 1 pM. The designed SPR sensor showed outstanding performance in detecting DA sensitively (S = 0.011°/fM, R2 = 0.8174) with low detection limit of 1.0 fM has been achieved for the first time. The increased angular shift of SPR dip, narrow full width half maximum of the SPR curves, excellent signal-to-noise ratio and figure of merit, and a binding affinity constant (KA) of 2.962 PM−1 demonstrated the potential of this sensor to detect DA with high accuracy. Overall, it was concluded that the proposed sensor would serve as a valuable tool in clinical diagnostic for the serious neurological disorders. This in turns has a significant socio-economic impact.

... read more

3 Citations


Open accessJournal ArticleDOI: 10.3390/APP11156814
24 Jul 2021-Applied Sciences
Abstract: Nanostructured titania (TiO2) is the most widely applied semiconducting oxide for a variety of purposes, and it is found in many commercial products. The vast majority of uses rely on its photo-activity, which, upon light irradiation, results in excited states that can be used for diverse applications. These range from catalysis, especially for energy or environmental remediation, to medicine—in particular, to attain antimicrobial surfaces and coatings for titanium implants. Clearly, the properties of titania are enhanced when working at the nanoscale, thanks to the increasingly active surface area. Nanomorphology plays a key role in the determination of the materials’ final properties. In particular, the nucleation and growth of nanosized titania onto carbon nanostructures as a support is a hot topic of investigation, as the nanocarbons not only provide structural stability but also display the ability of electronic communication with the titania, leading to enhanced photoelectronic properties of the final materials. In this concise review, we present the latest progress pertinent to the use of nanocarbons as templates to tailor nanostructured titania, and we briefly review the most promising applications and future trends of this field.

... read more

2 Citations


Open accessJournal ArticleDOI: 10.3390/S21165554
18 Aug 2021-Sensors
Abstract: With the advancement of human-computer interaction, robotics, and especially humanoid robots, there is an increasing trend for human-to-human communications over online platforms (e.g., zoom). This has become more significant in recent years due to the Covid-19 pandemic situation. The increased use of online platforms for communication signifies the need to build efficient and more interactive human emotion recognition systems. In a human emotion recognition system, the physiological signals of human beings are collected, analyzed, and processed with the help of dedicated learning techniques and algorithms. With the proliferation of emerging technologies, e.g., the Internet of Things (IoT), future Internet, and artificial intelligence, there is a high demand for building scalable, robust, efficient, and trustworthy human recognition systems. In this paper, we present the development and progress in sensors and technologies to detect human emotions. We review the state-of-the-art sensors used for human emotion recognition and different types of activity monitoring. We present the design challenges and provide practical references of such human emotion recognition systems in the real world. Finally, we discuss the current trends in applications and explore the future research directions to address issues, e.g., scalability, security, trust, privacy, transparency, and decentralization.

... read more

Topics: The Internet (51%), Emerging technologies (50%)

2 Citations


References
  More

154 results found


Journal ArticleDOI: 10.1002/ADMA.201302240
01 Nov 2013-Advanced Materials
Abstract: Human skin is a remarkable organ. It consists of an integrated, stretchable network of sensors that relay information about tactile and thermal stimuli to the brain, allowing us to maneuver within our environment safely and effectively. Interest in large-area networks of electronic devices inspired by human skin is motivated by the promise of creating autonomous intelligent robots and biomimetic prosthetics, among other applications. The development of electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin (e-skin) akin to human skin. E-skins are already capable of providing augmented performance over their organic counterpart, both in superior spatial resolution and thermal sensitivity. They could be further improved through the incorporation of additional functionalities (e.g., chemical and biological sensing) and desired properties (e.g., biodegradability and self-powering). Continued rapid progress in this area is promising for the development of a fully integrated e-skin in the near future.

... read more

Topics: Electronic skin (62%)

1,572 Citations


Journal ArticleDOI: 10.1021/NL051044E
Choongho Yu1, Li Shi1, Zhen Yao1, Deyu Li1  +1 moreInstitutions (1)
27 Jul 2005-Nano Letters
Abstract: We have observed experimentally that the thermal conductance of a 2.76-μm-long individual suspended single-wall carbon nanotube (SWCNT) was very close to the calculated ballistic thermal conductance of a 1-nm-diameter SWCNT without showing signatures of phonon−phonon Umklapp scattering for temperatures between 110 and 300 K. Although the observed thermopower of the SWCNT can be attributed to a linear diffusion contribution and a constant phonon drag effect, there could be an additional contact effect.

... read more

Topics: Thermal contact conductance (59%), Umklapp scattering (56%), Ballistic conduction (55%) ... show more

754 Citations


Journal ArticleDOI: 10.1039/C3NR05496A
Shanshan Yao1, Yong Zhu1Institutions (1)
30 Jan 2014-Nanoscale
Abstract: Considerable efforts have been made to achieve highly sensitive and wearable sensors that can simultaneously detect multiple stimuli such as stretch, pressure, temperature or touch. Here we develop highly stretchable multifunctional sensors that can detect strain (up to 50%), pressure (up to ∼1.2 MPa) and finger touch with high sensitivity, fast response time (∼40 ms) and good pressure mapping function. The reported sensors utilize the capacitive sensing mechanism, where silver nanowires are used as electrodes (conductors) and Ecoflex is used as a dielectric. The silver nanowire electrodes are screen printed. Our sensors have been demonstrated for several wearable applications including monitoring thumb movement, sensing the strain of the knee joint in patellar reflex (knee-jerk) and other human motions such as walking, running and jumping from squatting, illustrating the potential utilities of such sensors in robotic systems, prosthetics, healthcare and flexible touch panels.

... read more

749 Citations


Journal ArticleDOI: 10.1002/ADMA.201504366
Yasser Khan1, Aminy E. Ostfeld1, Claire M. Lochner1, Adrien Pierre1  +1 moreInstitutions (1)
01 Jun 2016-Advanced Materials
Abstract: Advances in wireless technologies, low-power electronics, the internet of things, and in the domain of connected health are driving innovations in wearable medical devices at a tremendous pace. Wearable sensor systems composed of flexible and stretchable materials have the potential to better interface to the human skin, whereas silicon-based electronics are extremely efficient in sensor data processing and transmission. Therefore, flexible and stretchable sensors combined with low-power silicon-based electronics are a viable and efficient approach for medical monitoring. Flexible medical devices designed for monitoring human vital signs, such as body temperature, heart rate, respiration rate, blood pressure, pulse oxygenation, and blood glucose have applications in both fitness monitoring and medical diagnostics. As a review of the latest development in flexible and wearable human vitals sensors, the essential components required for vitals sensors are outlined and discussed here, including the reported sensor systems, sensing mechanisms, sensor fabrication, power, and data processing requirements.

... read more

Topics: Wearable computer (53%), Flexible electronics (51%)

709 Citations


Journal ArticleDOI: 10.1021/ACSNANO.5B01613
Eun Roh1, Byeong-Ung Hwang1, Do-Il Kim1, Bo-Yeong Kim1  +1 moreInstitutions (1)
16 Apr 2015-ACS Nano
Abstract: Interactivity between humans and smart systems, including wearable, body-attachable, or implantable platforms, can be enhanced by realization of multifunctional human–machine interfaces, where a variety of sensors collect information about the surrounding environment, intentions, or physiological conditions of the human to which they are attached. Here, we describe a stretchable, transparent, ultrasensitive, and patchable strain sensor that is made of a novel sandwich-like stacked piezoresisitive nanohybrid film of single-wall carbon nanotubes (SWCNTs) and a conductive elastomeric composite of polyurethane (PU)-poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS). This sensor, which can detect small strains on human skin, was created using environmentally benign water-based solution processing. We attributed the tunability of strain sensitivity (i.e., gauge factor), stability, and optical transparency to enhanced formation of percolating networks between conductive SWCNTs and PEDOT phases at ...

... read more

Topics: Stretchable electronics (60%), PEDOT:PSS (52%), Gauge factor (52%)

612 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20221
20215