scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Flexible temperature sensors based on carbon nanomaterials.

04 Mar 2021-Journal of Materials Chemistry B (The Royal Society of Chemistry)-Vol. 9, Iss: 8, pp 1941-1964
TL;DR: In this paper, a review of flexible temperature sensors based on carbon nanomaterials is presented, where the working mechanisms, device structures, material compositions, fabrication technologies, temperature sensing properties, crucial roles of carbon materials, specific advantages and existing limitations are comprehensively elaborated and discussed, and conclusions are made and challenges as well as future perspectives are systematically outlined and discussed.
Abstract: Flexible temperature sensors can be attached to the surface of human skin or curved surfaces directly for continuous and stable data measurements, and have attracted extensive attention in myriad areas. Carbon nanomaterials possess great potential for temperature sensing, and flexible temperature sensors based on carbon nanomaterials have demonstrated unique advantages such as high sensitivity, fast response, good mechanical adaptability, low-cost fabrication processes, high cycling stability and reliability. In this review, the working mechanisms, device structures, material compositions, fabrication technologies, temperature sensing properties, the crucial roles of carbon nanomaterials, specific advantages and existing limitations of different types of flexible temperature sensors based on carbon nanomaterials are comprehensively elaborated and discussed. Based on recent advances, conclusions are made and challenges as well as future perspectives are systematically outlined and discussed.
Citations
More filters
Journal ArticleDOI
01 Jan 2021
TL;DR: Sensors are vital components of Industry 4.0, allowing several transitions such as changes in positions, length, height, external and dislocations in industrial production facilities to be detected, measured, analysed, and processed.
Abstract: Sensors play a crucial role in factory automation in making the system intellectual. Different types of sensors are available as per the suitability and applications; some of them are produced in mass and available in the market at affordable costs. The standard sensor types available are position sensors, pressure sensors, flow sensors, temperature sensors, and force sensors. They are used in many sectors, such as motorsport, medical, industry, aerospace, agriculture, and daily life. The objective of Industry 4.0 is to increase efficiency through automation. Sensors are vital components of Industry 4.0, allowing several transitions such as changes in positions, length, height, external and dislocations in industrial production facilities to be detected, measured, analysed, and processed. Smart factories will also enhance sustainability by tracking real-time output, and automated control systems will minimise potential factory maintenance costs. It can also be seen that digitalisation can improve production mobility, which gives advanced manufacturing firms a competitive advantage. This paper discusses sensors and their various types, along with significant capabilities for manufacturing. The step-by-step working Blocks and Quality Services of Sensors during implementation in Industry 4.0 are elaborated diagrammatically. Finally, we identified thirteen significant applications of sensors for Industry 4.0. Industry 4.0 provides an excellent opportunity for the development of the sensor market across the globe. In Industry 4.0, sensors will enjoy higher acceptance rates and benefit from a fully enabled connecting and data exchange and logistics integration. In the coming years, sensor installations may grow in process management, automated production lines, and digital supply chains.

78 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the latest developments in the identification of antibiotics by nanomaterial-constructed biosensors and summarize an in-depth assessment of the nanostructured electrochemical sensing method for residues of antibiotics in different systems.
Abstract: Antibiotics can accumulate through food metabolism in the human body which may have a significant effect on human safety and health. It is therefore highly beneficial to establish easy and sensitive approaches for rapid assessment of antibiotic amounts. In the development of next-generation biosensors, nanomaterials (NMs) with outstanding thermal, mechanical, optical, and electrical properties have been identified as one of the most hopeful materials for opening new gates. This study discusses the latest developments in the identification of antibiotics by nanomaterial-constructed biosensors. The construction of biosensors for electrochemical signal-transducing mechanisms has been utilized in various types of nanomaterials, including quantum dots (QDs), metal-organic frameworks (MOFs), magnetic nanoparticles (NPs), metal nanomaterials, and carbon nanomaterials. To provide an outline for future study directions, the existing problems and future opportunities in this area are also included. The current review, therefore, summarizes an in-depth assessment of the nanostructured electrochemical sensing method for residues of antibiotics in different systems.

32 citations

Journal ArticleDOI
Lloyd Axworthy1, Rui Chen2, Tao Luo2, Da Geng2, Zheng Shen, Wei Zhou2 
01 Feb 2022-Carbon
TL;DR: In this article, a fast response flexible temperature sensor is fabricated in a facile manner on the basis of laser-reduced graphene oxide(GO) for contactless human-machine interface.

27 citations

Journal ArticleDOI
01 Feb 2022-Carbon
TL;DR: In this paper , a fast response flexible temperature sensor is fabricated in a facile manner on the basis of laser-reduced graphene oxide(GO) for contactless human-machine interface.

27 citations

Journal ArticleDOI
TL;DR: In this article, a simple and ultra-sensitive surface plasmon resonance (SPR) sensor was constructed for DA detection by preparation of chitosan- graphene quantum dots (CS-GQDs) thin film as the sensing layer.

26 citations

References
More filters
Journal ArticleDOI
TL;DR: Electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin akin to human skin.
Abstract: Human skin is a remarkable organ. It consists of an integrated, stretchable network of sensors that relay information about tactile and thermal stimuli to the brain, allowing us to maneuver within our environment safely and effectively. Interest in large-area networks of electronic devices inspired by human skin is motivated by the promise of creating autonomous intelligent robots and biomimetic prosthetics, among other applications. The development of electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin (e-skin) akin to human skin. E-skins are already capable of providing augmented performance over their organic counterpart, both in superior spatial resolution and thermal sensitivity. They could be further improved through the incorporation of additional functionalities (e.g., chemical and biological sensing) and desired properties (e.g., biodegradability and self-powering). Continued rapid progress in this area is promising for the development of a fully integrated e-skin in the near future.

1,950 citations

Journal ArticleDOI
TL;DR: The essential components required for vitals sensors are outlined and discussed here, including the reported sensor systems, sensing mechanisms, sensor fabrication, power, and data processing requirements.
Abstract: Advances in wireless technologies, low-power electronics, the internet of things, and in the domain of connected health are driving innovations in wearable medical devices at a tremendous pace. Wearable sensor systems composed of flexible and stretchable materials have the potential to better interface to the human skin, whereas silicon-based electronics are extremely efficient in sensor data processing and transmission. Therefore, flexible and stretchable sensors combined with low-power silicon-based electronics are a viable and efficient approach for medical monitoring. Flexible medical devices designed for monitoring human vital signs, such as body temperature, heart rate, respiration rate, blood pressure, pulse oxygenation, and blood glucose have applications in both fitness monitoring and medical diagnostics. As a review of the latest development in flexible and wearable human vitals sensors, the essential components required for vitals sensors are outlined and discussed here, including the reported sensor systems, sensing mechanisms, sensor fabrication, power, and data processing requirements.

959 citations

Journal ArticleDOI
TL;DR: High stretchable multifunctional sensors that can detect strain, pressure, finger touch and finger touch with high sensitivity, fast response time and good pressure mapping function are developed.
Abstract: Considerable efforts have been made to achieve highly sensitive and wearable sensors that can simultaneously detect multiple stimuli such as stretch, pressure, temperature or touch. Here we develop highly stretchable multifunctional sensors that can detect strain (up to 50%), pressure (up to ∼1.2 MPa) and finger touch with high sensitivity, fast response time (∼40 ms) and good pressure mapping function. The reported sensors utilize the capacitive sensing mechanism, where silver nanowires are used as electrodes (conductors) and Ecoflex is used as a dielectric. The silver nanowire electrodes are screen printed. Our sensors have been demonstrated for several wearable applications including monitoring thumb movement, sensing the strain of the knee joint in patellar reflex (knee-jerk) and other human motions such as walking, running and jumping from squatting, illustrating the potential utilities of such sensors in robotic systems, prosthetics, healthcare and flexible touch panels.

896 citations

Journal ArticleDOI
Choongho Yu1, Li Shi1, Zhen Yao1, Deyu Li1, Arunava Majumdar1 
TL;DR: It is observed that the thermal conductance of a 2.76-microm-long individual suspended single-wall carbon nanotube (SWCNT) was very close to the calculated ballistic thermal conductances of a 1-nm-diameter SWCNT without showing signatures of phonon-phonon Umklapp scattering for temperatures between 110 and 300 K.
Abstract: We have observed experimentally that the thermal conductance of a 2.76-μm-long individual suspended single-wall carbon nanotube (SWCNT) was very close to the calculated ballistic thermal conductance of a 1-nm-diameter SWCNT without showing signatures of phonon−phonon Umklapp scattering for temperatures between 110 and 300 K. Although the observed thermopower of the SWCNT can be attributed to a linear diffusion contribution and a constant phonon drag effect, there could be an additional contact effect.

809 citations

Journal ArticleDOI
Eun Roh1, Byeong-Ung Hwang1, Do-Il Kim1, Bo-Yeong Kim1, Nae-Eung Lee1 
16 Apr 2015-ACS Nano
TL;DR: A stretchable, transparent, ultrasensitive, and patchable strain sensor that is made of a novel sandwich-like stacked piezoresisitive nanohybrid film of single-wall carbon nanotubes and a conductive elastomeric composite of polyurethane (PU)-poly(3,4-ethylenedioxythiophene) polystyrenesulfonate is described.
Abstract: Interactivity between humans and smart systems, including wearable, body-attachable, or implantable platforms, can be enhanced by realization of multifunctional human–machine interfaces, where a variety of sensors collect information about the surrounding environment, intentions, or physiological conditions of the human to which they are attached. Here, we describe a stretchable, transparent, ultrasensitive, and patchable strain sensor that is made of a novel sandwich-like stacked piezoresisitive nanohybrid film of single-wall carbon nanotubes (SWCNTs) and a conductive elastomeric composite of polyurethane (PU)-poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS). This sensor, which can detect small strains on human skin, was created using environmentally benign water-based solution processing. We attributed the tunability of strain sensitivity (i.e., gauge factor), stability, and optical transparency to enhanced formation of percolating networks between conductive SWCNTs and PEDOT phases at ...

771 citations