scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Fluorophore tagged bio-molecules and their applications: A brief review

09 Aug 2018-Applied Spectroscopy Reviews (Taylor & Francis)-Vol. 53, Iss: 7, pp 552-601
TL;DR: This review demonstrates the applications of such conjugated fluorescent molecular probes in different domains of biological activities and brings out the advantages and disadvantages of this particular type of fluorophores with the insight to the future perspectives.
Abstract: Bio-molecules are principal building blocks of living species and their inter-play is the cause of bio-activities. Various sophisticated experimental techniques as well as theoretical studies have ...
Citations
More filters
Journal ArticleDOI
TL;DR: Theranostic nanomaterials are emerging as novel paradigm with ability for concurrent delivery of imaging, targeting, and anticancer therapeutics with one delivery system (as cancer theranostics) and can transpire as promising strategy to overcome various hurdles for effective management of breast cancer.
Abstract: Breast cancer is one of the most frequently diagnosed cancers in women and the major cause of worldwide cancer-related deaths among women. Various treatment strategies including conventional chemotherapy, immunotherapy, gene therapy, gene silencing and deliberately engineered nanomaterials for receptor mediated targeted delivery of anticancer drugs, antibodies, and small-molecule inhibitors, etc are being investigated by scientists to combat breast cancer. Smartly designed/fabricated nanomaterials are being explored to target breast cancer through enhanced permeation and retention effect; and also, being conjugated with suitable ligand for receptor-mediated endocytosis to target breast cancer for diagnostic, and theranostic applications. These receptor-targeted nanomedicines have shown efficacy to target specific tumor tissue/cells abstaining the healthy tissues/cells from cytotoxic effect of anticancer drug molecules. In the last few decades, theranostic nanomedicines have gained much attention among other nanoparticle systems due to their unique ability to deliver chemotherapeutic as well as diagnostic agents, simultaneously. Theranostic nanomaterials are emerging as novel paradigm with ability for concurrent delivery of imaging (with contrasting agents), targeting (with biomarkers), and anticancer therapeutics with one delivery system (as cancer theranostics) and can transpire as promising strategy to overcome various hurdles for effective management of breast cancer including its most aggressive form, triple-negative breast cancer.

5 citations

Book ChapterDOI
01 Jan 2021
TL;DR: In this article, four major biophysical techniques namely Nuclear Magnetic Resonance spectroscopy (NMR), Surface Plasmon Resonance (SPR), Isothermal Titration Calorimetry (ITC), and Fluorescence Spectroscopy are discussed.
Abstract: Proteins are large, complex molecules that functionally regulates almost all cellular and biochemical processes As proteins are important component in cell physiology, their interaction with small molecules that modulates the function are clinically significant Nearly, all essential biomolecular processes are highly sensitive and selective involving molecular recognition and binding of ligands/macromolecules to proteins Hence, techniques that can reveal detailed information like binding energetics, kinetics, stoichiometry, thermodynamics, structural changes and conformational dynamics are of great importance Current arsenal of techniques that enable characterization of these interactions have been well established and progressing towards advancement at a faster pace The current chapter details four major biophysical techniques namely Nuclear Magnetic Resonance spectroscopy (NMR), Surface Plasmon Resonance (SPR), Isothermal Titration Calorimetry (ITC) and Fluorescence Spectroscopy that are vastly used in characterizing the thermodynamics and kinetics of protein-ligand interaction

4 citations

Journal ArticleDOI
TL;DR: A range of guiding principles that can inform the design of other fluorescent molecules are illustrated but it is demonstrated that many of these diphenylacetylenes have significant utility as probes in a range of cellular imaging studies.
Abstract: Fluorescent probes are increasingly used as reporter molecules in a wide variety of biophysical experiments, but when designing new compounds it can often be difficult to anticipate the effect that changing chemical structure can have on cellular localisation and fluorescence behaviour. To provide further chemical rationale for probe design, a series of donor-acceptor diphenylacetylene fluorophores with varying lipophilicities and structures were synthesised and analysed in human epidermal cells using a range of cellular imaging techniques. These experiments showed that, within this family, the greatest determinants of cellular localisation were overall lipophilicity and the presence of ionisable groups. Indeed, compounds with high log D values (>5) were found to localise in lipid droplets, but conversion of their ester acceptor groups to the corresponding carboxylic acids caused a pronounced shift to localisation in the endoplasmic reticulum. Mildly lipophilic compounds (log D = 2-3) with strongly basic amine groups were shown to be confined to lysosomes i.e. an acidic cellular compartment, but sequestering this positively charged motif as an amide resulted in a significant change to cytoplasmic and membrane localisation. Finally, specific organelles including the mitochondria could be targeted by incorporating groups such as a triphenylphosphonium moiety. Taken together, this account illustrates a range of guiding principles that can inform the design of other fluorescent molecules but, moreover, has demonstrated that many of these diphenylacetylenes have significant utility as probes in a range of cellular imaging studies.

3 citations

Journal Article
TL;DR: In this paper, the authors explored the interaction of capsaicin with dimyristoylphosphatidylcholine (DMPC) lipid bilayer membrane by monitoring various photophysical parameters using its intrinsic fluorescence.
Abstract: Capsaicin is an ingredient of a wide variety of red peppers, and it has various pharmacological and biological applications. The present study explores the interaction of capsaicin with dimyristoylphosphatidylcholine (DMPC) lipid bilayer membrane by monitoring various photophysical parameters using its intrinsic fluorescence. In order to have a clearer understanding of the photophysical responses of capsaicin, studies involving (i) its solvation behavior in different solvents, (ii) the partition coefficient of capsaicin in different thermotropic phase states of lipid bilayer membrane, and (iii) its location inside lipid bilayer membrane have been carried out. Capsaicin has a reasonably high partition coefficient for DMPC liposome membrane, in both solid gel (2.8 ± 0.1 × 10⁵) and liquid crystalline (2.6 ± 0.1 × 10⁵) phases. Fluorescence quenching study using cetylpyridinium chloride (CPC) as quencher suggests that the phenolic group of capsaicin molecule is generally present near the headgroup region and hydrophobic tail present inside hydrophobic core region of the lipid bilayer membrane. The intrinsic fluorescence intensity and lifetime of capsaicin sensitively respond to the temperature dependent phase changes of liposome membrane. Above 15 mol %, capsaicin in the aqueous liposome suspension medium lowers the thermotropic phase transition temperature by about 3 °C, and above 30 mol %, the integrity of the membrane is significantly lost.

1 citations

References
More filters
Book
01 Jan 1983
TL;DR: This book describes the fundamental aspects of fluorescence, the biochemical applications of this methodology, and the instrumentation used in fluorescence spectroscopy.
Abstract: Fluorescence methods are being used increasingly in biochemical, medical, and chemical research. This is because of the inherent sensitivity of this technique. and the favorable time scale of the phenomenon of fluorescence. 8 Fluorescence emission occurs about 10- sec (10 nsec) after light absorp tion. During this period of time a wide range of molecular processes can occur, and these can effect the spectral characteristics of the fluorescent compound. This combination of sensitivity and a favorable time scale allows fluorescence methods to be generally useful for studies of proteins and membranes and their interactions with other macromolecules. This book describes the fundamental aspects of fluorescence. and the biochemical applications of this methodology. Each chapter starts with the -theoreticalbasis of each phenomenon of fluorescence, followed by examples which illustrate the use of the phenomenon in the study of biochemical problems. The book contains numerous figures. It is felt that such graphical presentations contribute to pleasurable reading and increased understand ing. Separate chapters are devoted to fluorescence polarization, lifetimes, quenching, energy transfer, solvent effects, and excited state reactions. To enhance the usefulness of this work as a textbook, problems are included which illustrate the concepts described in each chapter. Furthermore, a separate chapter is devoted to the instrumentation used in fluorescence spectroscopy. This chapter will be especially valuable for those perform ing or contemplating fluorescence measurements. Such measurements are easily compromised by failure to consider a number of simple principles."

28,073 citations


"Fluorophore tagged bio-molecules an..." refers background in this paper

  • ...Fluorophores are usually classified in two categories; intrinsic and extrinsic (1, 18)....

    [...]

BookDOI
25 Apr 2012
TL;DR: In this article, the effects of intermolecular photophysical processes on fluorescence emission are discussed and an analysis of the effect of polarity of fluorescence emissions is presented.
Abstract: Preface. Prologue. Introduction. Absorption of UV--visible light. Characteristics of Fluorescence Emission. Effects of Intermolecular Photophysical Processes on Fluorescence Emission. Fluorescence polarization: Emission Ansotropy. Principles of steady--state and time--resolved fluorometric techniques. Effect of polarity of fluorescence emission. Polarity probes. Microviscosity, fluidity, molecular mobility. Estimation by means of fluorescent probes. Resonance energy transfer and its applications. Fluorescent molecular sensors of ions and molecules. Advanced techniques in fluorescence spectroscopy. Epilogue. Index.

4,261 citations

Journal ArticleDOI
TL;DR: The lifetime of a photophysical process is the time required by a population of N electronically excited molecules to be reduced by a factor of e via the loss of energy through fluorescence and other non-radiative processes and the average length of time τ is called the mean lifetime, or simply lifetime.
Abstract: When a molecule absorbs a photon of appropriate energy, a chain of photophysical events ensues, such as internal conversion or vibrational relaxation (loss of energy in the absence of light emission), fluorescence, intersystem crossing (from singlet state to a triplet state) and phosphorescence, as shown in the Jablonski diagram for organic molecules (Fig. 1). Each of the processes occurs with a certain probability, characterized by decay rate constants (k). It can be shown that the average length of time τ for the set of molecules to decay from one state to another is reciprocally proportional to the rate of decay: τ = 1/k. This average length of time is called the mean lifetime, or simply lifetime. It can also be shown that the lifetime of a photophysical process is the time required by a population of N electronically excited molecules to be reduced by a factor of e. Correspondingly, the fluorescence lifetime is the time required by a population of excited fluorophores to decrease exponentially to N/e via the loss of energy through fluorescence and other non-radiative processes. The lifetime of photophycal processes vary significantly from tens of femotoseconds for internal conversion1,2 to nanoseconds for fluorescence and microseconds or seconds for phosphorescence.1 Open in a separate window Figure 1 Jablonski diagram and a timescale of photophysical processes for organic molecules.

1,829 citations

Journal ArticleDOI
TL;DR: An assay for vesicle--vesicle fusion involving resonance energy transfer between N-(7-nitro-2,1,3-benzoxadiazol-4-yl), the energy donor, and rhodamine, the energy acceptor has been developed.
Abstract: An assay for vesicle--vesicle fusion involving resonance energy transfer between N-(7-nitro-2,1,3-benzoxadiazol-4-yl), the energy donor, and rhodamine, the energy acceptor, has been developed. The two fluorophores are coupled to the free amino group of phosphatidylethanolamine to provide analogues which can be incorporated into a lipid vesicle bilayer. When both fluorescent lipids are in phosphatidylserine vesicles at appropriate surface densities (ratio of fluorescent lipid to total lipid), efficient energy transfer is observed. When such vesicles are fused with a population of pure phosphatidylserine vesicles by the addition of calcium, the two probes mix with the other lipids present to form a new membrane. This mixing reduces the surface density of the energy acceptor resulting in a decreased efficiency of resonance energy transfer which is measured experimentally. These changes in transfer efficiency allow kinetic and quantitative measurements of the fusion process. Using this system, we have studied the ability of phosphatidylcholine, phosphatidylserine, and phosphatidylcholine--phosphatidylserine (1:1) vesicles to fuse with cultured fibroblasts. Under the conditions employed, the majority of the cellular uptake of vesicle lipid could be attributed to the adsorption of intact vesicles to the cell surface regardless of the composition of the vesicle bilayer.

1,262 citations


"Fluorophore tagged bio-molecules an..." refers background or methods in this paper

  • ...With the help of these RET assays distinction between adsorption and fusion is also possible (82)....

    [...]

  • ...Lipid NBD, Dansyl Membrane polarity (68, 72) NBD Packing density (65) Pyrene Domain formation (47) NBD Lateral heterogeneity (48) Pentaene Nano-domain formation (73) Pyrene Lipid-protein interaction (74, 75) Fluorescein – BODIPYCoumarin – BODIPY Lipid-protein interaction (76, 77) Pyrene Fusion (61, 78, 79, 80) NBD – Rhodamine Fluorescein – Rhodamine Fluorescein – BODIPY Dansyl – BODIPY Pyrene – BODIPY DPH – BODIPY Coumarin – BODIPY Coumarin – Rhodamine Fusion (61, 78, 81, 82)...

    [...]