scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Fog and IoT: An Overview of Research Opportunities

23 Jun 2016-IEEE Internet of Things Journal (IEEE)-Vol. 3, Iss: 6, pp 854-864
TL;DR: This survey paper summarizes the opportunities and challenges of fog, focusing primarily in the networking context of IoT.
Abstract: Fog is an emergent architecture for computing, storage, control, and networking that distributes these services closer to end users along the cloud-to-things continuum. It covers both mobile and wireline scenarios, traverses across hardware and software, resides on network edge but also over access networks and among end users, and includes both data plane and control plane. As an architecture, it supports a growing variety of applications, including those in the Internet of Things (IoT), fifth-generation (5G) wireless systems, and embedded artificial intelligence (AI). This survey paper summarizes the opportunities and challenges of fog, focusing primarily in the networking context of IoT.
Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management is provided in this paper, where a set of issues, challenges, and future research directions for MEC are discussed.
Abstract: Driven by the visions of Internet of Things and 5G communications, recent years have seen a paradigm shift in mobile computing, from the centralized mobile cloud computing toward mobile edge computing (MEC). The main feature of MEC is to push mobile computing, network control and storage to the network edges (e.g., base stations and access points) so as to enable computation-intensive and latency-critical applications at the resource-limited mobile devices. MEC promises dramatic reduction in latency and mobile energy consumption, tackling the key challenges for materializing 5G vision. The promised gains of MEC have motivated extensive efforts in both academia and industry on developing the technology. A main thrust of MEC research is to seamlessly merge the two disciplines of wireless communications and mobile computing, resulting in a wide-range of new designs ranging from techniques for computation offloading to network architectures. This paper provides a comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management. We also discuss a set of issues, challenges, and future research directions for MEC research, including MEC system deployment, cache-enabled MEC, mobility management for MEC, green MEC, as well as privacy-aware MEC. Advancements in these directions will facilitate the transformation of MEC from theory to practice. Finally, we introduce recent standardization efforts on MEC as well as some typical MEC application scenarios.

2,992 citations

Posted Content
TL;DR: A comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management and recent standardization efforts on MEC are introduced.
Abstract: Driven by the visions of Internet of Things and 5G communications, recent years have seen a paradigm shift in mobile computing, from the centralized Mobile Cloud Computing towards Mobile Edge Computing (MEC). The main feature of MEC is to push mobile computing, network control and storage to the network edges (e.g., base stations and access points) so as to enable computation-intensive and latency-critical applications at the resource-limited mobile devices. MEC promises dramatic reduction in latency and mobile energy consumption, tackling the key challenges for materializing 5G vision. The promised gains of MEC have motivated extensive efforts in both academia and industry on developing the technology. A main thrust of MEC research is to seamlessly merge the two disciplines of wireless communications and mobile computing, resulting in a wide-range of new designs ranging from techniques for computation offloading to network architectures. This paper provides a comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management. We also present a research outlook consisting of a set of promising directions for MEC research, including MEC system deployment, cache-enabled MEC, mobility management for MEC, green MEC, as well as privacy-aware MEC. Advancements in these directions will facilitate the transformation of MEC from theory to practice. Finally, we introduce recent standardization efforts on MEC as well as some typical MEC application scenarios.

2,289 citations


Cites background from "Fog and IoT: An Overview of Researc..."

  • ...2) Networking Security: The communication technologies to support MEC systems, e.g., WiFi, LTE and 5G, have their own security protocols to protect the system from attacks and intrusions....

    [...]

  • ...This led to the emergence of a new research area called Fog Computing and Networking [4], [12], [13]....

    [...]

  • ...However, in recent years, a new trend in computing is happening with the function of Clouds being increasingly moving towards the network edges [4]....

    [...]

  • ...This is also aligned with a key characteristic of nextgeneration networks that information is increasingly generated locally and consumed locally, which arises from the booming of applications in IoT, social networks and content delivery [4]....

    [...]

  • ...Computing and Networking [4], [12], [13]....

    [...]

Journal ArticleDOI
TL;DR: This paper analyzes the MEC reference architecture and main deployment scenarios, which offer multi-tenancy support for application developers, content providers, and third parties, and elaborates further on open research challenges.
Abstract: Multi-access edge computing (MEC) is an emerging ecosystem, which aims at converging telecommunication and IT services, providing a cloud computing platform at the edge of the radio access network MEC offers storage and computational resources at the edge, reducing latency for mobile end users and utilizing more efficiently the mobile backhaul and core networks This paper introduces a survey on MEC and focuses on the fundamental key enabling technologies It elaborates MEC orchestration considering both individual services and a network of MEC platforms supporting mobility, bringing light into the different orchestration deployment options In addition, this paper analyzes the MEC reference architecture and main deployment scenarios, which offer multi-tenancy support for application developers, content providers, and third parties Finally, this paper overviews the current standardization activities and elaborates further on open research challenges

1,351 citations


Cites background from "Fog and IoT: An Overview of Researc..."

  • ...Mechanisms that ensure scalability in a group of low mobility MTC devices at the edge of the RAN by reducing the amount of signaling and their content through the use of a group profile is elaborated in [57] and [58]....

    [...]

Journal ArticleDOI
TL;DR: A comprehensive survey, analyzing how edge computing improves the performance of IoT networks and considers security issues in edge computing, evaluating the availability, integrity, and the confidentiality of security strategies of each group, and proposing a framework for security evaluation of IoT Networks with edge computing.
Abstract: The Internet of Things (IoT) now permeates our daily lives, providing important measurement and collection tools to inform our every decision. Millions of sensors and devices are continuously producing data and exchanging important messages via complex networks supporting machine-to-machine communications and monitoring and controlling critical smart-world infrastructures. As a strategy to mitigate the escalation in resource congestion, edge computing has emerged as a new paradigm to solve IoT and localized computing needs. Compared with the well-known cloud computing, edge computing will migrate data computation or storage to the network “edge,” near the end users. Thus, a number of computation nodes distributed across the network can offload the computational stress away from the centralized data center, and can significantly reduce the latency in message exchange. In addition, the distributed structure can balance network traffic and avoid the traffic peaks in IoT networks, reducing the transmission latency between edge/cloudlet servers and end users, as well as reducing response times for real-time IoT applications in comparison with traditional cloud services. Furthermore, by transferring computation and communication overhead from nodes with limited battery supply to nodes with significant power resources, the system can extend the lifetime of the individual nodes. In this paper, we conduct a comprehensive survey, analyzing how edge computing improves the performance of IoT networks. We categorize edge computing into different groups based on architecture, and study their performance by comparing network latency, bandwidth occupation, energy consumption, and overhead. In addition, we consider security issues in edge computing, evaluating the availability, integrity, and the confidentiality of security strategies of each group, and propose a framework for security evaluation of IoT networks with edge computing. Finally, we compare the performance of various IoT applications (smart city, smart grid, smart transportation, and so on) in edge computing and traditional cloud computing architectures.

1,008 citations


Additional excerpts

  • ...To address the aforementioned problems and issues, in this paper we summarize existing efforts and previous work [11]–[17], and present our view on edge computing for the IoT....

    [...]

Journal ArticleDOI
TL;DR: 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.
Abstract: The fifth generation (5G) wireless communication networks are being deployed worldwide from 2020 and more capabilities are in the process of being standardized, such as mass connectivity, ultra-reliability, and guaranteed low latency. However, 5G will not meet all requirements of the future in 2030 and beyond, and sixth generation (6G) wireless communication networks are expected to provide global coverage, enhanced spectral/energy/cost efficiency, better intelligence level and security, etc. To meet these requirements, 6G networks will rely on new enabling technologies, i.e., air interface and transmission technologies and novel network architecture, such as waveform design, multiple access, channel coding schemes, multi-antenna technologies, network slicing, cell-free architecture, and cloud/fog/edge computing. Our vision on 6G is that it will have four new paradigm shifts. First, to satisfy the requirement of global coverage, 6G will not be limited to terrestrial communication networks, which will need to be complemented with non-terrestrial networks such as satellite and unmanned aerial vehicle (UAV) communication networks, thus achieving a space-air-ground-sea integrated communication network. Second, all spectra will be fully explored to further increase data rates and connection density, including the sub-6 GHz, millimeter wave (mmWave), terahertz (THz), and optical frequency bands. Third, facing the big datasets generated by the use of extremely heterogeneous networks, diverse communication scenarios, large numbers of antennas, wide bandwidths, and new service requirements, 6G networks will enable a new range of smart applications with the aid of artificial intelligence (AI) and big data technologies. Fourth, network security will have to be strengthened when developing 6G networks. This article provides a comprehensive survey of recent advances and future trends in these four aspects. Clearly, 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.

935 citations

References
More filters
Journal ArticleDOI
TL;DR: The results from a proof-of-concept prototype suggest that VM technology can indeed help meet the need for rapid customization of infrastructure for diverse applications, and this article discusses the technical obstacles to these transformations and proposes a new architecture for overcoming them.
Abstract: Mobile computing continuously evolve through the sustained effort of many researchers. It seamlessly augments users' cognitive abilities via compute-intensive capabilities such as speech recognition, natural language processing, etc. By thus empowering mobile users, we could transform many areas of human activity. This article discusses the technical obstacles to these transformations and proposes a new architecture for overcoming them. In this architecture, a mobile user exploits virtual machine (VM) technology to rapidly instantiate customized service software on a nearby cloudlet and then uses that service over a wireless LAN; the mobile device typically functions as a thin client with respect to the service. A cloudlet is a trusted, resource-rich computer or cluster of computers that's well-connected to the Internet and available for use by nearby mobile devices. Our strategy of leveraging transiently customized proximate infrastructure as a mobile device moves with its user through the physical world is called cloudlet-based, resource-rich, mobile computing. Crisp interactive response, which is essential for seamless augmentation of human cognition, is easily achieved in this architecture because of the cloudlet's physical proximity and one-hop network latency. Using a cloudlet also simplifies the challenge of meeting the peak bandwidth demand of multiple users interactively generating and receiving media such as high-definition video and high-resolution images. Rapid customization of infrastructure for diverse applications emerges as a critical requirement, and our results from a proof-of-concept prototype suggest that VM technology can indeed help meet this requirement.

3,599 citations

ReportDOI
03 Jun 2015
TL;DR: This document provides guidance on how to secure Industrial Control Systems, including Supervisory Control and Data Acquisition systems, Distributed Control Systems (DCS), and other control system configurations such as Programmable Logic Controllers (PLC), while addressing their unique performance, reliability, and safety requirements.
Abstract: This document provides guidance on how to secure Industrial Control Systems (ICS), including Supervisory Control and Data Acquisition (SCADA) systems, Distributed Control Systems (DCS), and other control system configurations such as Programmable Logic Controllers (PLC), while addressing their unique performance, reliability, and safety requirements The document provides an overview of ICS and typical system topologies, identifies typical threats and vulnerabilities to these systems, and provides recommended security countermeasures to mitigate the associated risks

1,351 citations

Journal ArticleDOI
05 Mar 2007
TL;DR: A survey of the recent efforts towards a systematic understanding of layering as optimization decomposition can be found in this paper, where the overall communication network is modeled by a generalized network utility maximization problem, each layer corresponds to a decomposed subproblem, and the interfaces among layers are quantified as functions of the optimization variables coordinating the subproblems.
Abstract: Network protocols in layered architectures have historically been obtained on an ad hoc basis, and many of the recent cross-layer designs are also conducted through piecemeal approaches. Network protocol stacks may instead be holistically analyzed and systematically designed as distributed solutions to some global optimization problems. This paper presents a survey of the recent efforts towards a systematic understanding of layering as optimization decomposition, where the overall communication network is modeled by a generalized network utility maximization problem, each layer corresponds to a decomposed subproblem, and the interfaces among layers are quantified as functions of the optimization variables coordinating the subproblems. There can be many alternative decompositions, leading to a choice of different layering architectures. This paper surveys the current status of horizontal decomposition into distributed computation, and vertical decomposition into functional modules such as congestion control, routing, scheduling, random access, power control, and channel coding. Key messages and methods arising from many recent works are summarized, and open issues discussed. Through case studies, it is illustrated how layering as Optimization Decomposition provides a common language to think about modularization in the face of complex, networked interactions, a unifying, top-down approach to design protocol stacks, and a mathematical theory of network architectures

1,301 citations

01 Jan 2007
TL;DR: A survey of the recent efforts towards a systematic understanding of layering as optimization decomposition, where the overall communication network is modeled by a generalized network utility maximization problem, each layer corresponds to a decomposed subproblem, and the interfaces among layers are quantified as functions of the optimization variables coordinating the subproblems.
Abstract: | Network protocols in layered architectures have historically been obtained on an ad hoc basis, and many of the recent cross-layer designs are also conducted through piecemeal approaches. Network protocol stacks may instead be holistically analyzed and systematically designed as distributed solutions to some global optimization problems. This paper presents a survey of the recent efforts towards a systematic understanding of "layering" as "optimization decomposition," where the overall communication network is modeled by a generalized network utility maximization problem, each layer corresponds to a decomposed subproblem, and the interfaces among layers are quantified as functions of the optimization variables coordinating the subproblems. There can be many alternative decompositions, leading to a choice of different layering architectures. This paper surveys the current status of horizontal decomposition into distributed computation, and vertical decomposition into functional modules such as congestion control, routing, scheduling, random access, power control, and channel coding. Key messages and methods arising from many recent works are summarized, and open issues discussed. Through case studies, it is illustrated how "Layering as Optimization Decomposition" provides a common language to think about modularization in the face of complex, networked interactions, a unifying, top-down approach to design protocol stacks, and a mathematical theory of network architectures.

1,229 citations

Book ChapterDOI
01 Jan 2014
TL;DR: This chapter proposes a hierarchical distributed architecture that extends from the edge of the network to the core nicknamed Fog Computing, and pays attention to a new dimension that IoT adds to Big Data and Analytics: a massively distributed number of sources at the edge.
Abstract: Internet of Things (IoT) brings more than an explosive proliferation of endpoints. It is disruptive in several ways. In this chapter we examine those disruptions, and propose a hierarchical distributed architecture that extends from the edge of the network to the core nicknamed Fog Computing. In particular, we pay attention to a new dimension that IoT adds to Big Data and Analytics: a massively distributed number of sources at the edge.

1,036 citations