scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Food Security: The Challenge of Feeding 9 Billion People

TL;DR: A multifaceted and linked global strategy is needed to ensure sustainable and equitable food security, different components of which are explored here.
Abstract: Continuing population and consumption growth will mean that the global demand for food will increase for at least another 40 years. Growing competition for land, water, and energy, in addition to the overexploitation of fisheries, will affect our ability to produce food, as will the urgent requirement to reduce the impact of the food system on the environment. The effects of climate change are a further threat. But the world can produce more food and can ensure that it is used more efficiently and equitably. A multifaceted and linked global strategy is needed to ensure sustainable and equitable food security, different components of which are explored here.

Content maybe subject to copyright    Report

Citations
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
20 Oct 2011-Nature
TL;DR: It is shown that tremendous progress could be made by halting agricultural expansion, closing ‘yield gaps’ on underperforming lands, increasing cropping efficiency, shifting diets and reducing waste, which could double food production while greatly reducing the environmental impacts of agriculture.
Abstract: Increasing population and consumption are placing unprecedented demands on agriculture and natural resources. Today, approximately a billion people are chronically malnourished while our agricultural systems are concurrently degrading land, water, biodiversity and climate on a global scale. To meet the world's future food security and sustainability needs, food production must grow substantially while, at the same time, agriculture's environmental footprint must shrink dramatically. Here we analyse solutions to this dilemma, showing that tremendous progress could be made by halting agricultural expansion, closing 'yield gaps' on underperforming lands, increasing cropping efficiency, shifting diets and reducing waste. Together, these strategies could double food production while greatly reducing the environmental impacts of agriculture.

5,954 citations

Journal ArticleDOI
TL;DR: Per capita demand for crops, when measured as caloric or protein content of all crops combined, has been a similarly increasing function of per capita real income since 1960 and forecasts a 100–110% increase in global crop demand from 2005 to 2050.
Abstract: Global food demand is increasing rapidly, as are the environmental impacts of agricultural expansion. Here, we project global demand for crop production in 2050 and evaluate the environmental impacts of alternative ways that this demand might be met. We find that per capita demand for crops, when measured as caloric or protein content of all crops combined, has been a similarly increasing function of per capita real income since 1960. This relationship forecasts a 100–110% increase in global crop demand from 2005 to 2050. Quantitative assessments show that the environmental impacts of meeting this demand depend on how global agriculture expands. If current trends of greater agricultural intensification in richer nations and greater land clearing (extensification) in poorer nations were to continue, ∼1 billion ha of land would be cleared globally by 2050, with CO2-C equivalent greenhouse gas emissions reaching ∼3 Gt y−1 and N use ∼250 Mt y−1 by then. In contrast, if 2050 crop demand was met by moderate intensification focused on existing croplands of underyielding nations, adaptation and transfer of high-yielding technologies to these croplands, and global technological improvements, our analyses forecast land clearing of only ∼0.2 billion ha, greenhouse gas emissions of ∼1 Gt y−1, and global N use of ∼225 Mt y−1. Efficient management practices could substantially lower nitrogen use. Attainment of high yields on existing croplands of underyielding nations is of great importance if global crop demand is to be met with minimal environmental impacts.

5,303 citations


Cites background or methods from "Food Security: The Challenge of Fee..."

  • ...3 billion person increase in global population and greater per capita incomes anticipated through midcentury (1)....

    [...]

  • ...Because of data availability, we use past N fertilization rates as quantitative measures of soil fertility enhancement, but we emphasize that soil fertility can also be enhanced by legumes, cover crops, and other means and that yields could increase with less N fertilizer than in the past if N use efficiency increases (1, 2, 13)....

    [...]

  • ...The increased global yields that could result from various degrees of technology improvement, technology transfer, or N use would meet 2050 crop demand with less cropland clearing (1, 2) (Fig....

    [...]

  • ...Both land clearing and more intensive use of existing croplands could contribute to the increased crop production needed to meet such demand, but the environmental impacts and tradeoffs of these alternative paths of agricultural expansion are unclear (1, 2)....

    [...]

Posted ContentDOI
TL;DR: In this paper, a re-make of the Interim Report World Agriculture: towards 2030/2050 (FAO, 2006) is presented, which includes a Chapter 4 on production factors (land, water, yields, fertilizers).
Abstract: This paper is a re-make of Chapters 1-3 of the Interim Report World Agriculture: towards 2030/2050 (FAO, 2006). In addition, this new paper includes a Chapter 4 on production factors (land, water, yields, fertilizers). Revised and more recent data have been used as basis for the new projections, as follows: (a) updated historical data from the Food Balance Sheets 1961-2007 as of June 2010; (b) undernourishment estimates from The State of Food Insecurity in the World 2010 (SOFI) and related new parameters (CVs, minimum daily energy requirements) are used in the projections; (c) new population data and projections from the UN World Population Prospects - Revision of 2008; (d) new GDP data and projections from the World Bank; (e) a new base year of 2005/2007 (the previous edition used the base year 1999/2001); (f) updated estimates of land resources from the new evaluation of the Global Agro-ecological Zones (GAEZ) study of FAO and IIASA. Estimates of land under forest and in protected areas from the GAEZ are taken into account and excluded from the estimates of land areas suitable for crop production into which agriculture could expand in the future; (g) updated estimates of existing irrigation, renewable water resources and potentials for irrigation expansion; and (h) changes in the text as required by the new historical data and projections. Like the interim report, this re-make does not include projections for the Fisheries and Forestry sectors. Calories from fish are, however, included, in the food consumption projections, along with those from other commodities (e.g. spices) not analysed individually. The projections presented reflect the magnitudes and trajectories we estimate the major food and agriculture variables may assume in the future; they are not meant to reflect how these variables may be required to evolve in the future in order to achieve some normative objective, e.g. ensure food security for all, eliminate undernourishment or reduce it to any given desired level, or avoid food overconsumption leading to obesity and related NonCommunicable Diseases.

2,991 citations

Journal ArticleDOI
19 Jun 2013-PLOS ONE
TL;DR: Detailed maps are presented to identify where rates must be increased to boost crop production and meet rising demands, which are far below what is needed to meet projected demands in 2050.
Abstract: Several studies have shown that global crop production needs to double by 2050 to meet the projected demands from rising population, diet shifts, and increasing biofuels consumption. Boosting crop yields to meet these rising demands, rather than clearing more land for agriculture has been highlighted as a preferred solution to meet this goal. However, we first need to understand how crop yields are changing globally, and whether we are on track to double production by 2050. Using ∼2.5 million agricultural statistics, collected for ∼13,500 political units across the world, we track four key global crops-maize, rice, wheat, and soybean-that currently produce nearly two-thirds of global agricultural calories. We find that yields in these top four crops are increasing at 1.6%, 1.0%, 0.9%, and 1.3% per year, non-compounding rates, respectively, which is less than the 2.4% per year rate required to double global production by 2050. At these rates global production in these crops would increase by ∼67%, ∼42%, ∼38%, and ∼55%, respectively, which is far below what is needed to meet projected demands in 2050. We present detailed maps to identify where rates must be increased to boost crop production and meet rising demands.

2,404 citations


Cites background from "Food Security: The Challenge of Fee..."

  • ...Numerous authors have suggested that increasing crop yields, rather than clearing more land for food production, is the most sustainable path for food security [2,4,9–14]....

    [...]

  • ...The world is experiencing rising demands for crop production, stemming from three key forces: increasing human population, meat and dairy consumption from growing affluence, and biofuel consumption [1–5]....

    [...]

  • ...Numerous studies have shown that feeding a more populated and more prosperous world will roughly require a doubling of agricultural production by 2050 [1–7], translating to a ,2....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: This paper describes how an engineering approach, drawing on mathematical models of systems and processes, contributes new methods that support decision making at all levels from strategy and planning to tactics and real-time control.
Abstract: Engineering research and development contributes to the advance of sustainable agriculture both through innovative methods to manage and control processes, and through quantitative understanding of the operation of practical agricultural systems using decision models. This paper describes how an engineering approach, drawing on mathematical models of systems and processes, contributes new methods that support decision making at all levels from strategy and planning to tactics and real-time control. The ability to describe the system or process by a simple and robust mathematical model is critical, and the outputs range from guidance to policy makers on strategic decisions relating to land use, through intelligent decision support to farmers and on to real-time engineering control of specific processes. Precision in decision making leads to decreased use of inputs, less environmental emissions and enhanced profitability—all essential to sustainable systems.

32 citations

Journal ArticleDOI
TL;DR: In this article, the authors make a reference to the work of Hernando de Soto The Mystery of Capital: Why Capitalism Triumphs in the West and Fails everywhere else, and his characterization of the Western institution of formal property.
Abstract: In this paper we begin with a reference to the work of Hernando de Soto The Mystery of Capital: Why Capitalism Triumphs in the West and Fails Everywhere Else, and his characterization of the Western institution of formal property . We note the linkages that he sees between the institution and successful capitalist enterprise. Therefore, given the appropriateness of his analysis, it would appear to be worthwhile for developing and less developed countries to adjust their systems of ownership to conform more closely to the Western system of formal property. However, we go on to point out that property relationships within the Western system have become subject to redefinition through the expansion of Intellectual Property (IP) rights in ways that ultimately work to the disadvantage of the developing and less developed countries. We point out that this restructuring has been given global application through the implementation of the TRIPS agreement by the WTO. In the final section of the paper I suggest ways in which IP rights and relevant institutions can be reformed in order to avoid the disadvantages to the developing and less developed countries.

19 citations

Related Papers (5)
Trending Questions (1)
Allegory District 9?

The provided paper does not mention anything about the allegory District 9.