scispace - formally typeset
Journal ArticleDOI

Formation and characterization of borohydride reduced electroless nickel deposits

25 Feb 2004-Journal of Alloys and Compounds (Elsevier)-Vol. 365, Iss: 1, pp 197-205

TL;DR: In this article, the formation of electroless Ni-B deposits and evaluation of their characteristic properties were studied. And the corrosion resistance of Ni-b deposits, in 3.5% sodium chloride solution, both in as-plated and heat-treated (450°C/1 h) conditions, was also evaluated by potentiostatic polarization and electrochemical impedance studies.

AbstractThe present work aims to study the formation of electroless Ni-B deposits and evaluation of their characteristic properties. An alkaline bath having nickel chloride as the source of nickel and borohydride as the reducing agent was used to prepare the electroless Ni-B deposits. The influence of variation in bath constituents as well as operating conditions on the plating rate, and, the nickel and boron content, of the resultant Ni-B deposits were studied. Selected deposits were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), evolved gas analysis (EGA), vibrating sample magnetometer (VSM) and transmission electron microscope (TEM), respectively, for assessing the phase content, phase transformation behaviour, liberation of hydrogen during crystallization, saturation magnetic moment and micro-structural features. The corrosion resistance of Ni-B deposits, in 3.5% sodium chloride solution, both in as-plated and heat-treated (450 °C/1 h) conditions, was also evaluated by potentiostatic polarization and electrochemical impedance studies. XRD patterns reveal that Ni-B deposits of the present study are amorphous in as-plated condition and undergo phase transformation to crystalline nickel and nickel borides upon heat-treatment. DSC traces exhibit two exothermic peaks at 306 and 427 °C, corresponding to the phase transformation of amorphous Ni-B to crystalline nickel and Ni 3 B phases and the transformation of a higher phase compound to Ni 3 B and Ni 2 B, respectively. TEM microstructures and EGA strongly support the occurrence of phase transitions at 306 and 427 °C. Electroless Ni-B deposits demonstrate a moderate corrosion resistance in 3.5% sodium chloride solution. The extent of corrosion resistance offered by electroless Ni-B deposits is relatively less compared to electroless Ni-9 wt.% P deposit.

...read more

Content maybe subject to copyright    Report


Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the effect of borohydride, thallium acetate, ethylenediamine and sodium hydroxide concentrations, and the coating bath temperature on both the coating rate and boron content of the electroless Ni-B films was investigated systematically.
Abstract: The effect of borohydride, thallium acetate, ethylenediamine and sodium hydroxide concentrations, and the coating bath temperature on both the coating rate and boron content of the electroless Ni–B films was investigated systematically. The Ni–B coating rate increased with the increase in thallium acetate and sodium hydroxide concentrations, but it was not very sensitive to the borohydride concentration. Below 90 g L − 1 ethylenediamine concentration the coating efficiency was significantly low and above this value as the ethylenediamine concentration increased the coating rate decreased slightly. Below 85 °C the coating rate was very low and above this temperature it was insensitive to the bath temperature. The boron content of Ni–B film increased with the increase in the borohydride concentration and the bath temperature, and decreased with the increase in thallium acetate and ethylenediamine concentrations. Up to 50 g L − 1 sodium hydroxide concentration, the boron content of the film increased and above this concentration it was insensitive to the sodium hydroxide concentration. As the boron content of Ni–B film increased, both the corrosion resistance and microhardness of Ni–B film increased. Heat treatment brought significant improvement in the microhardness but the corrosion resistance of Ni–B film was observed to decrease due to the disappearance of the amorphous characteristics of the as-deposited Ni–B film and the formation of the Ni–B compound phases.

124 citations

Journal ArticleDOI
TL;DR: In this paper, the hardness of electroless nickel-boron (Ni-B) coatings on a pure (99.99%) copper substrate has been evaluated using an empirical model and regression analysis.
Abstract: The alkaline borohydride-reduced bath has been used to deposit electroless nickel–boron (Ni–B) coatings on a pure (99.99%) copper substrate. The hardness of the Ni–B coatings has been improved using optimized deposition conditions and thereafter by annealing. The electroless Ni–B deposition per unit area has been considered as the response variable and response surface method (RSM) has been used to optimize the process parameters and the deposition per unit area. The electroless Ni–B coatings have again been formed at the optimized deposition conditions and the as-deposited coating hardness has been evaluated using an empirical model and regression analysis. It has been observed that there is a significant improvement in as-deposited coating hardness. The Ni–B coated specimens formed at optimized deposition conditions have also been annealed at different temperatures ranging from 100 °C to 500 °C. The hardness of the annealed specimens has been estimated for different annealing temperatures and has been observed that the coating hardness increases with annealing temperature and then further increase in annealing temperature reduces the coating hardness. The coating hardness becomes the highest for annealing temperature of about 300 °C. Both the as-deposited and annealed coating hardness have been observed to be significantly higher than that reported by many researchers for electroless Ni–B coatings.

101 citations

Journal ArticleDOI
TL;DR: In this article, the formation of electroless Ni-B coatings obtained using a low temperature bath and evaluation of their characteristic properties are addressed in the form of X-ray diffraction (XRD), differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM), respectively.
Abstract: The formation of electroless Ni–B coatings obtained using a low temperature bath and evaluation of their characteristic properties are addressed in this paper. An alkaline bath having nickel chloride as the source of nickel and borohydride as the reducing agent was used to prepare the electroless Ni–B coatings. The influence of concentration of sodium borohydride in bath on the plating rate and the nickel/boron content of the resultant Ni–B coatings was studied. Selected coatings were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM), respectively, for assessing the phase content, phase transformation behaviour and magnetic properties. XRD patterns reveal that the structure of electroless Ni–B coatings in as-plated condition is a function of the boron content of the coating: higher the boron content, greater the amorphous nature of the coating and vice-versa. DSC traces exhibit two exothermic peaks around 300 and 420 °C, corresponding to the phase transformation of crystalline nickel and Ni3B phases at 300 °C and the transformation of a higher phase compound to Ni3B at 420 °C. VSM studies indicate that the magnetic properties of the coating is also a function of the boron content of the coating: higher the boron content, lesser the saturation magnetization.

95 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of boron concentration in the Ni-B alloys on their structure, morphology, electrochemical and corrosion behavior, physico-mechanical and electrical properties was investigated using X-ray diffractometry (XRD), scanning electron microscopy (SEM), potentiodynamic polarization and electrochemical impedance spectroscopy (EIS).
Abstract: Ni–B alloy coatings with different boron content ranging from 4 to approximately 28 at.% were prepared by electrodeposition in a nickel-plating bath containing sodium decahydroclovodecaborate as a boron source. The influence of the boron concentration in the coatings on their structure, morphology, electrochemical and corrosion behavior, physico-mechanical and electrical properties was investigated using X-ray diffractometry (XRD), scanning electron microscopy (SEM), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and other methods. It was found that the electrodeposited Ni–B coatings with relatively low boron content (≤8 at.%) are nanocrystalline and comprise a solid solution of boron in f.c.c. Ni lattice having a mixed substituted-interstitial type. Further increase in the boron content (up to 10–15 at.%) leads to the appearance of heterogeneous amorphous-nanocrystalline structure, and the coatings with a high boron content (20 at.% and above) are X-ray amorphous. Polarization measurements in neutral NaCl solutions showed that the Ni–B coatings with relatively low boron content demonstrate a potential region of low anodic currents associated with the passive film formation at the alloy surface. The anodic current in this potential region increases significantly with increasing the boron content above 10 at.%, suggesting the non-protective nature of the anodic film formed on the amorphous Ni–B alloys. Immersion tests monitored by EIS measurements revealed a significantly better corrosion performance of the Ni–B coatings with low boron content (4 at.%) in comparison with that of the amorphous coatings. The microhardness and wear resistance of the Ni–B coatings essentially increases with increasing the boron content. Maximum microhardness and wear resistance were found for the coatings containing 8 at.% B.

83 citations

Journal ArticleDOI
TL;DR: In this article, the formation of electrodeposited Ni-B alloy coatings using a dimethylamine borane modified Watt's nickel bath and evaluation of their structural characteristics, hardness and wear resistance are discussed.
Abstract: The formation of electrodeposited Ni–B alloy coatings using a dimethylamine borane (DMAB) modified Watt's nickel bath and evaluation of their structural characteristics, hardness and wear resistance are discussed. The boron content in the electrodeposited Ni–B alloy coating is determined by the ratio of rate of reduction of nickel and rate of decomposition of DMAB. The boron content of the electrodeposited Ni–B coating decreases as the current density increased from 0.4 to 4 A dm −2 . XRD diffraction pattern of electrodeposited Ni–B coatings in their as-plated condition exhibits the presence of Ni (1 1 1), (2 0 0) and (2 2 0) reflections with (1 1 1) texture. Heat treatment at 400 °C for 1 h has resulted in the formation of nickel boride phases, which results in an increase in hardness and wear resistance. The mechanism of wear in electrodeposited Ni–B coatings is intensive plastic deformation of the coating due to the ploughing action of the hard counter disk.

79 citations


References
More filters
Book
01 Jan 1990
TL;DR: The Electroless Plating: Fundamentals and Applications (ESPA) as discussed by the authors is a comprehensive text that covers both fundamental and applied aspects of electroless deposition, and was first introduced at SUR/FIN '91.
Abstract: Many texts have been written on surface finishing over the years that deal with electroless deposition as a sidelight. Through the talents and efforts of Glenn Mallory and Juan Hajdu, a comprehensive text, entitled Electroless Plating: Fundamentals and Applications, is available through AESF Headquarters. The editors have combined the efforts of 27 contributing authors to produce a wide-ranging text that covers both fundamental and applied aspects of the subject. Published by the AESF, the book was first introduced at SUR/FIN ‘91—Toronto.

962 citations

Book
01 Dec 1991

406 citations

Patent
23 Sep 1968
TL;DR: HIGH STABILITY, AUTOCATALYTIC ELECTROLESS NICKEL PLATING BATH COMPRISING an AQUEOUS SOLUTION CONTAINing about 0.08-016 MOLE/LITER NICKels IONS, about 019-0.38 MOLE / LITER HYPOPHOSPHITE IONS and ESSENTIALLY about 035-3.14 MOLE or Liter CITRATE IONS as discussed by the authors.
Abstract: HIGH STABILITY, AUTOCATALYTIC ELECTROLESS NICKEL PLATING BATH COMPRISING AN AQUEOUS SOLUTION CONTAINING ABOUT 0.08-016 MOLE/LITER NICKEL IONS, ABOUT 0.19-0.38 MOLE/ LITER HYPOPHOSPHITE IONS, AND ESSENTIALLY ABOUT 0.35-3.68 MOLE/LITER AMMONIUM IONS, ABOUT 0.0.-1.07 MOLE/LITER ACETATE ION AND ABOUT 0.007-0.14 MOLE/LITER CITRATE IONS, THE SOLUTION HAVING A PH IN THE RANGE OF ABOUT 7.0 TO ABOUT 9.5 THE AMMONIUM IONS COMPLEX PALLADOUS IONS INTRODUCED INTO THE PLATING BATH BY "DRAG OUT" FROM THE ACTIVATOR SOLUTION TO FORM A SOLUBLE AMMONIUM-PALLADIUM COMPLEX, WHICH INHIBITS REDUCTION OF PALLADOUS ION TO ZERO VALENT CATALYTIC PALLADIUM BY THE HYPOPHOSPHITE OF THE BATH. BY THE REMOVAL OF POTENTIAL CATALYST SITES FROM THE BATH OR BY RENDERING THE POTENTIAL SITES RELATIVELY CATALYTICALLY INACTIVE, RANDOM DEPOSITION OF THE NICKEL AND PREMATURE LOSS OF THE BATH IS AVOIDED.

154 citations

Journal ArticleDOI
TL;DR: In this paper, the same fundamental reaction is occurring on all the coatings of the present study but over a different effective area in each case, which can be attributed to the decrease in the effective metallic area prone to corrosion.
Abstract: Electroless Ni-P composite coatings have gained a good deal of popularity and acceptance in recent years as they provide considerable improvement of desirable qualities such as hardness, wear, abrasion resistance, etc. The disagreement among researchers on the corrosion behaviour of these coatings warrants a thorough investigation. Among the various techniques available for the determination of corrosion resistance, electrochemical impedance spectroscopy (EIS) is considered to be superior as it provides not only an assessment of the corrosion resistance of different deposits but also enables the mechanistic pathway by which the deposits become corroded to be determined. The present investigation focuses on the evaluation of the corrosion resistance of electroless Ni-P and Ni-P-Si3N4, Ni-P-CeO2 and Ni-P-TiO2 composite coatings produced using an acidic hypophosphite-reduced electroless nickel bath, using EIS. The study makes evident that the same fundamental reaction is occurring on all the coatings of the present study but over a different effective area in each case. The charge transfer resistance of electroless Ni-P and Ni-P composite deposits are in the range 32,253–90,700 Ω cm2, whereas the capacitances of these coatings are in the range 11–17 µF/cm2. The improved corrosion resistance obtained for electroless Ni-P and Ni-P composite coatings is due to the enrichment of phosphorus on the electrode surface, which enables the preferential hydrolysis of phosphorus over that of nickel. The better corrosion resistance obtained for electroless Ni-P composite coatings can be ascribed to the decrease in the effective metallic area prone to corrosion. Among the three electroless Ni-P composite coatings, the corrosion resistance is in the following order: Ni-P-CeO2=Ni-P-Si3N4>Ni-P-TiO2.

110 citations

Journal ArticleDOI
TL;DR: In this paper, the conditions for electroless nickel-boron plating, the process mechanism, and the structure of the alloys asplated and after annealing at 150°-700°C were investigated.
Abstract: The conditions for electroless nickel‐boron plating, the process mechanism, and the structure of the alloys as‐plated and after annealing at 150°–700°C were investigated. A correlation of the mechanical and magnetic properties with the changes of phase structure was established.

103 citations