scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Formation and characterization of borohydride reduced electroless nickel deposits

TL;DR: In this article, the formation of electroless Ni-B deposits and evaluation of their characteristic properties were studied. And the corrosion resistance of Ni-b deposits, in 3.5% sodium chloride solution, both in as-plated and heat-treated (450°C/1 h) conditions, was also evaluated by potentiostatic polarization and electrochemical impedance studies.
About: This article is published in Journal of Alloys and Compounds.The article was published on 2004-02-25. It has received 136 citations till now. The article focuses on the topics: Electroless nickel & Nickel boride.
Citations
More filters
Journal ArticleDOI
Fengjiao He1, Hui Su1, Hui Ju1, Ling Tan1, Que Zhou1 
TL;DR: In this article, a new blackening process of the NiWP deposits was reported, and the influence of tungsten content on blacking was discussed by comparing morphology and chemical composition.
Abstract: Black coatings have been widely used in industries for their excellent decorative, physical and mechanical properties. In this paper, a new blackening process of the NiWP deposits was reported. Uniform black coatings can been obtained by simply immersing the NiWP deposits with less than 26.35% (by weight) of W content in the HCl–H2O2–HF solution. The influence of tungsten content on blacking was discussed by comparing morphology and chemical composition of the NiWP deposits. The formation mechanism studies of black film showed that the black color of the NiWP deposit was caused by both its unique dense meshwork morphology at the surface of the NiWP black layer as well to the formation of oxides (NiO, Ni2O3 and WO3) and phosphate products (Ni(H2PO4)2). Optical property, thermal stability and corrosion resistance of the black ternary NiWP coatings were also studied in detail.

12 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the corrosion behavior of electroless Ni-B coatings by varying the coating parameters viz. bath temperature, reducing agent concentration and nickel source concentration together with the annealing temperature.
Abstract: Electroless nickel coatings are very popular for their corrosion resistant actions. The present article attempts to study the corrosion behaviour of electroless Ni-B coatings by varying the coating parameters viz. bath temperature, reducing agent concentration and nickel source concentration together with the annealing temperature. The electrochemical parameters viz., corrosion potential and corrosion current density are evaluated with the help of potentiodynamic polarization experimentation. Taguchi based Grey analysis is employed in order to optimize this multiple response problem and the optimal combination of parameters for maximum corrosion resistance for Ni-B coatings is presented. Moreover, analysis of variance reveals that bath temperature and concentration of nickel source have significant influence on the corrosion performance of the coating. The microstructure characterization of the coating is also conducted with the help of scanning electron microscopy, energy dispersive X-ray analysis and X-ray diffraction analysis. The Ni-B coating in general exhibits a nodular structure and turns crystalline with heat treatment. The corroded surface exhibits cracks and black spots which imply the occurrence of localized corrosion.

12 citations


Cites background from "Formation and characterization of b..."

  • ...Hypophosphite reduced (Ni-P) electroless nickel coatings have already proved their mettle as a coating for tribological based applications [3-5] and attention has shifted towards borohydride reduced (Ni-B) coatings [5-12] as the latter can provide improved properties....

    [...]

  • ...The phase boundaries present in Ni-B deposits might also be responsible for causing discontinuity of the passivation film, which are the preferred sites for the initiation of corrosion process [10]....

    [...]

  • ...corrosion potential, corrosion current density, charge transfer resistance, double layer capacitance, corrosion rate, etc [9-11]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a double-nozzle gun was used to spray two different solutions containing the precursors onto the surface of a composite NiBP-graphite film and their corrosion and tribological properties were investigated.
Abstract: Purpose – This paper aims to coat ternary composite NiBP-graphite films by Dynamic Chemical Plating “DCP” technique with a growth rate of at least 5 μm/h, which makes this technique a worthy candidate for production of composite films. Electroless nickel plating method can be used to deposit nickel–phosphorous and nickel–boron coatings on metals or plastic surface. However, restrictions such as toxicity, short lifetime of the plating-bath and limited plating rate have limited applications of conventional electroless processes. Design/methodology/approach – DCP is an alternative for producing metallic deposits on non-conductive materials and can be considered as a modified electroless coating process. Using a double-nozzle gun, two different solutions containing the precursors are sprayed simultaneously and separately onto the surface. With this technique, NiBP-graphite films are fabricated and their corrosion and tribological properties are investigated. Findings – With a film thickness of 2 μm, tribologi...

11 citations

Journal ArticleDOI
TL;DR: In this paper, the electroless deposition of boron-containing Ni (EN-B) film from a supercritical carbon dioxide (sc-CO 2 ) bath was introduced.

10 citations

References
More filters
Book
01 Jan 1990
TL;DR: The Electroless Plating: Fundamentals and Applications (ESPA) as discussed by the authors is a comprehensive text that covers both fundamental and applied aspects of electroless deposition, and was first introduced at SUR/FIN '91.
Abstract: Many texts have been written on surface finishing over the years that deal with electroless deposition as a sidelight. Through the talents and efforts of Glenn Mallory and Juan Hajdu, a comprehensive text, entitled Electroless Plating: Fundamentals and Applications, is available through AESF Headquarters. The editors have combined the efforts of 27 contributing authors to produce a wide-ranging text that covers both fundamental and applied aspects of the subject. Published by the AESF, the book was first introduced at SUR/FIN ‘91—Toronto.

963 citations

Book
01 Dec 1991

406 citations

Patent
23 Sep 1968
TL;DR: HIGH STABILITY, AUTOCATALYTIC ELECTROLESS NICKEL PLATING BATH COMPRISING an AQUEOUS SOLUTION CONTAINing about 0.08-016 MOLE/LITER NICKels IONS, about 019-0.38 MOLE / LITER HYPOPHOSPHITE IONS and ESSENTIALLY about 035-3.14 MOLE or Liter CITRATE IONS as discussed by the authors.
Abstract: HIGH STABILITY, AUTOCATALYTIC ELECTROLESS NICKEL PLATING BATH COMPRISING AN AQUEOUS SOLUTION CONTAINING ABOUT 0.08-016 MOLE/LITER NICKEL IONS, ABOUT 0.19-0.38 MOLE/ LITER HYPOPHOSPHITE IONS, AND ESSENTIALLY ABOUT 0.35-3.68 MOLE/LITER AMMONIUM IONS, ABOUT 0.0.-1.07 MOLE/LITER ACETATE ION AND ABOUT 0.007-0.14 MOLE/LITER CITRATE IONS, THE SOLUTION HAVING A PH IN THE RANGE OF ABOUT 7.0 TO ABOUT 9.5 THE AMMONIUM IONS COMPLEX PALLADOUS IONS INTRODUCED INTO THE PLATING BATH BY "DRAG OUT" FROM THE ACTIVATOR SOLUTION TO FORM A SOLUBLE AMMONIUM-PALLADIUM COMPLEX, WHICH INHIBITS REDUCTION OF PALLADOUS ION TO ZERO VALENT CATALYTIC PALLADIUM BY THE HYPOPHOSPHITE OF THE BATH. BY THE REMOVAL OF POTENTIAL CATALYST SITES FROM THE BATH OR BY RENDERING THE POTENTIAL SITES RELATIVELY CATALYTICALLY INACTIVE, RANDOM DEPOSITION OF THE NICKEL AND PREMATURE LOSS OF THE BATH IS AVOIDED.

154 citations

Journal ArticleDOI
TL;DR: In this paper, the same fundamental reaction is occurring on all the coatings of the present study but over a different effective area in each case, which can be attributed to the decrease in the effective metallic area prone to corrosion.
Abstract: Electroless Ni-P composite coatings have gained a good deal of popularity and acceptance in recent years as they provide considerable improvement of desirable qualities such as hardness, wear, abrasion resistance, etc. The disagreement among researchers on the corrosion behaviour of these coatings warrants a thorough investigation. Among the various techniques available for the determination of corrosion resistance, electrochemical impedance spectroscopy (EIS) is considered to be superior as it provides not only an assessment of the corrosion resistance of different deposits but also enables the mechanistic pathway by which the deposits become corroded to be determined. The present investigation focuses on the evaluation of the corrosion resistance of electroless Ni-P and Ni-P-Si3N4, Ni-P-CeO2 and Ni-P-TiO2 composite coatings produced using an acidic hypophosphite-reduced electroless nickel bath, using EIS. The study makes evident that the same fundamental reaction is occurring on all the coatings of the present study but over a different effective area in each case. The charge transfer resistance of electroless Ni-P and Ni-P composite deposits are in the range 32,253–90,700 Ω cm2, whereas the capacitances of these coatings are in the range 11–17 µF/cm2. The improved corrosion resistance obtained for electroless Ni-P and Ni-P composite coatings is due to the enrichment of phosphorus on the electrode surface, which enables the preferential hydrolysis of phosphorus over that of nickel. The better corrosion resistance obtained for electroless Ni-P composite coatings can be ascribed to the decrease in the effective metallic area prone to corrosion. Among the three electroless Ni-P composite coatings, the corrosion resistance is in the following order: Ni-P-CeO2=Ni-P-Si3N4>Ni-P-TiO2.

119 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of phosphorus on the corrosion behavior of electroless nickel-plated mild steel in deaerated 40 w/o NaOH solution was examined using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) techniques.
Abstract: Electroless Ni-P deposits with phosphorus content ranging from 4.8 to 12.8 weight percent (w/o) were examined using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) techniques to characterize the effect of phosphorus on the corrosion behavior of electroless nickel-plated mild steel in deaerated 40 w/o NaOH solution. Anodic polarization of the electroless Ni-P alloys in caustic NaOH solution shows that the passive current density decreases with increasing phosphorus content in the deposits. At an applied potential of -1.2 V vs. saturated calomel electrode (V SCE ) (close to their E corr ), EIS data indicate that the R ct for Ni-P alloys in NaOH solution increases with increasing phosphorus content. X-ray photoelectron spectroscopy (XPS) results suggest that the primary constituent formed on the Ni-P surface after EIS measurement in 40 w/o NaOH solution at an applied potential of -0.4 V SCE (in the passive region) is Ni(OH) 2 , which is responsible for the passivity of the Ni-P alloys. The polarization resistance of Ni-P alloys in NaOH solution at -0.4 V SCE also increases with increasing phosphorus content

111 citations