scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Fractional negative binomial and pólya processes

TL;DR: In this article, a fractional negative binomial process FNBP was defined by replacing the Poisson process by a FPP in the gamma subordinated form of the NBP.
Abstract: In this paper, we define a fractional negative binomial process FNBP by replacing the Poisson process by a fractional Poisson process FPP in the gamma subordinated form of the negative binomial process. It is shown that the one-dimensional distributions of the FPP and the FNBP are not infinitely divisible. Also, the space fractional Polya process SFPP is defined by replacing the rate parameter λ by a gamma random variable in the definition of the space fractional Poisson process. The properties of the FNBP and the SFPP and the connections to PDEs governing the density of the FNBP and the SFPP are also investigated.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors studied the fractional Poisson process (FPP) time-changed by an independent Levy subordinator and the inverse of the Levy subordinators, which they call TCFPP-I and TC FPP-II, respectively.
Abstract: In this paper, we study the fractional Poisson process (FPP) time-changed by an independent Levy subordinator and the inverse of the Levy subordinator, which we call TCFPP-I and TCFPP-II, respectively. Various distributional properties of these processes are established. We show that, under certain conditions, the TCFPP-I has the long-range dependence property, and also its law of iterated logarithm is proved. It is shown that the TCFPP-II is a renewal process and its waiting time distribution is identified. The bivariate distributions of the TCFPP-II are derived. Some specific examples for both the processes are discussed. Finally, we present simulations of the sample paths of these processes.

28 citations

Journal ArticleDOI
TL;DR: In this article, the Poisson process of order k (PPoK) time-changed with an independent Levy subordinator and its inverse was studied, which they called TCPPoK-I and TCPPoK-II.
Abstract: In this article, we study the Poisson process of order k (PPoK) time-changed with an independent Levy subordinator and its inverse, which we call, respectively, as TCPPoK-I and TCPPoK-II, t...

18 citations

Journal ArticleDOI
TL;DR: In this article, a space fractional negative binomial process (SFNB) was introduced by time-changing the Space fractional Poisson process by a gamma subordinator and its one-dimensional distributions were derived in terms of generalized Wright functions and their governing equations were obtained.
Abstract: In this paper, we introduce a space fractional negative binomial process (SFNB) by time-changing the space fractional Poisson process by a gamma subordinator. Its one-dimensional distributions are derived in terms of generalized Wright functions and their governing equations are obtained. It is a Levy process and the corresponding Levy measure is given. Extensions to the case of distributed order SFNB, where the fractional index follows a two-point distribution, are investigated in detail. The relationship with space fractional Polya-type processes is also discussed. Moreover, we define and study multivariate versions, which we obtain by time-changing a d-dimensional space-fractional Poisson process by a common independent gamma subordinator. Some applications to population’s growth and epidemiology models are explored. Finally, we discuss algorithms for the simulation of the SFNB process.

12 citations

Journal ArticleDOI
TL;DR: The space-time fractional Poisson process (STFPP) as mentioned in this paper is a generalization of the TFPP and the space fractional poisson process, defined by Orsingher and Poilto (2012).
Abstract: The space-time fractional Poisson process (STFPP), defined by Orsingher and Poilto (2012), is a generalization of the time fractional Poisson process (TFPP) and the space fractional Poisson...

8 citations

Posted Content
TL;DR: In this paper, the authors studied the Poisson process of order k (PPoK) time-changed with an independent Levy subordinator and its inverse, which they call respectively, as TCPPoK-I and TCPPOK-II, through various distributional properties, long-range dependence and limit theorems for the PPoK and the TCP-I.
Abstract: In this article, we study the Poisson process of order k (PPoK) time-changed with an independent Levy subordinator and its inverse, which we call respectively, as TCPPoK-I and TCPPoK-II, through various distributional properties, long-range dependence and limit theorems for the PPoK and the TCPPoK-I. Further, we study the governing difference-differential equations of the TCPPoK-I for the case inverse Gaussian subordinator. Similarly, we study the distributional properties, asymptotic moments and the governing difference-differential equation of TCPPoK-II. As an application to ruin theory, we give a governing differential equation of ruin probability in insurance ruin using these processes. Finally, we present some simulated sample paths of both the processes.

2 citations


Cites background or methods from "Fractional negative binomial and pó..."

  • ...It is known that negative binomial process can be obtained by subordinating the Poisson process with gamma process (see [19])....

    [...]

  • ...The moments of fGðtÞgt 0 are given by (see [19])...

    [...]

References
More filters
Book
13 Nov 1999

3,839 citations

Book
01 Jan 1968
TL;DR: The authors introduce probability theory for both advanced undergraduate students of statistics and scientists in related fields, drawing on real applications in the physical and biological sciences, and make probability exciting." -Journal of the American Statistical Association
Abstract: This classic text and reference introduces probability theory for both advanced undergraduate students of statistics and scientists in related fields, drawing on real applications in the physical and biological sciences. The book makes probability exciting." -Journal of the American Statistical Association

3,592 citations

Book
31 May 2010
TL;DR: The Eulerian Functions The Bessel Functions The Error Functions The Exponential Integral Functions The Mittag-Leffler Functions The Wright Functions as mentioned in this paper The Eulerians Functions
Abstract: Essentials of Fractional Calculus Essentials of Linear Viscoelasticity Fractional Viscoelastic Media Waves in Linear Viscoelastic Media: Dispersion and Dissipation Waves in Linear Viscoelastic Media: Asymptotic Methods Pulse Evolution in Fractional Viscoelastic Media The Eulerian Functions The Bessel Functions The Error Functions The Exponential Integral Functions The Mittag-Leffler Functions The Wright Functions.

1,593 citations


Additional excerpts

  • ...th some special functions that will be required later. The Mittag-Leffler function Lβ(z) is defined as (see [8]) (2.1) Lβ(z) = X∞ k=0 zk Γ(1+βk) , β,z∈ Cand Re(β) >0. The M-Wright function Mβ(z) (see [10, 17]) is defined as Mβ(z) = X∞ n=0 (−z)n n!Γ(−βn+(1− β)) = 1 π X∞ n=1 (−z)n−1 (n− 1)! Γ(βn)sin(πβn), z∈ C, 0 <β<1. Fractional Negative Binomial and Polya Processes 3 Let p,q∈ Z+\{0}. Also, for 1 ≤ i≤...

    [...]

BookDOI
01 Jan 2010

394 citations

Journal ArticleDOI
TL;DR: In this article, a fractional non-Markov Poisson stochastic process has been developed based on fractional generalization of the Kolmogorov-Feller equation.

302 citations


"Fractional negative binomial and pó..." refers background in this paper

  • ... Wright function defined in (2.5). It is also known that (see [16]) Nβ(t,λ) = N(Eβ(t),λ), where Eβ(t) is the hitting time of a stable subordinator Dβ(t). The mean and variance of FPP are given by (see [12]) ENβ(t,λ) = λtβ Γ(β+1) (3.5) ; Var(Nβ(t,λ)) = λtβ Γ(β+1) ˆ 1+ λtβ Γ(β+1) βB(β,1/2) 22β−1 − 1 ˙ (3.6) , where B(a,b) denotes the beta function. First we establish an important property of an FPP. 3...

    [...]

  • ...gative binomial process, with Q(t) ∼ NB(t|η,pt), where η= α/(1+ α). Let 0 <β<1. A natural generalization is to consider Qβ(t) = Nβ(Γ(t),λ), where {Nβ(t)}t≥0 is a fractional Poisson process (see [12, 16]), and we call {Qβ(t)}t≥0 is a fractional negative binomial process (FNBP). We will show that this process is different from the FNBP defined in [3] and [4]. It is known that the Polya process is obtain...

    [...]

  • ...t 0 <β<1. The fractional Poisson process (FPP) {Nβ(t,λ)}t≥0, which is a generalization of the Poisson process {N(t,λ)}t≥0 and solves the following fractional difference-differential equation (see [12, 14, 16]) Dβ t p β (n|t,λ) = −λp β (n|t,λ)+λp β (3.1) (n− 1|t,λ), for n≥ 1 Dβ t p β (0|t,λ) = −λp β (0|t,λ), where p β (n|t,λ) = P{Nβ(t,λ) = n} and (3.2) Dβ t u(t,x) = 1 Γ(1− β) Z t 0 ∂u(r,x) ∂r dr (t− r)β , ...

    [...]