scispace - formally typeset
Search or ask a question
Posted Content

Fractional Negative Binomial and Polya Processes

TL;DR: In this paper, the authors defined a fractional negative binomial process (FNBP) by replacing the Poisson process by a FPP in the gamma subordinated form of the negative Binomial process.
Abstract: In this paper, we define a fractional negative binomial process (FNBP) by replacing the Poisson process by a fractional Poisson process (FPP) in the gamma subordinated form of the negative binomial process. First, it is shown that the one-dimensional distributions of the FPP are not infinitely divisible. The long-range dependence of the FNBP, the short-range dependence of its increments and the infinite divisibility of the FPP and the FNBP are investigated. Also, the space fractional Polya process (SFPP) is defined by replacing the rate parameter $\lambda$ by a gamma random variable in the definition of the space fractional Poisson process. The properties of the FNBP and the SFPP and the connections to $pde$'$s$ governing the density of the FNBP and the SFPP are also investigated.
Citations
More filters
28 Aug 2011
TL;DR: In this paper, it was shown that a traditional Poisson process, with the time variable replaced by an independent inverse stable subordinator, is also a fractional poisson process with Mittag-Leffler waiting times.
Abstract: The fractional Poisson process is a renewal process with Mittag-Leffler waiting times. Its distributions solve a time-fractional analogue of the Kolmogorov forward equation for a Poisson process. This paper shows that a traditional Poisson process, with the time variable replaced by an independent inverse stable subordinator, is also a fractional Poisson process. This result unifies the two main approaches in the stochastic theory of time-fractional diffusion equations. The equivalence extends to a broad class of renewal processes that include models for tempered fractional diffusion, and distributed-order (e.g., ultraslow) fractional diffusion. The paper also {discusses the relation between} the fractional Poisson process and Brownian time.

50 citations

Journal ArticleDOI
TL;DR: In this paper, the authors considered point processes Nf(t), t > 0, with independent increments and integer-valued jumps whose distribution is expressed in terms of Bernstein functions f with Levy measure ν.
Abstract: In this paper we consider point processes Nf(t), t > 0, with independent increments and integer-valued jumps whose distribution is expressed in terms of Bernstein functions f with Levy measure ν. We obtain the general expression of the probability generating functions Gf of Nf, the equations governing the state probabilities pkf of Nf, and their corresponding explicit forms. We also give the distribution of the first-passage times Tkf of Nf, and the related governing equation. We study in detail the cases of the fractional Poisson process, the relativistic Poisson process, and the gamma-Poisson process whose state probabilities have the form of a negative binomial. The distribution of the times τjlj of jumps with height lj (∑j=1rlj = k) under the condition N(t) = k for all these special processes is investigated in detail.

45 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the fractional Poisson process (FPP) time-changed by an independent Levy subordinator and the inverse of the Levy subordinators, which they call TCFPP-I and TC FPP-II, respectively.
Abstract: In this paper, we study the fractional Poisson process (FPP) time-changed by an independent Levy subordinator and the inverse of the Levy subordinator, which we call TCFPP-I and TCFPP-II, respectively. Various distributional properties of these processes are established. We show that, under certain conditions, the TCFPP-I has the long-range dependence property, and also its law of iterated logarithm is proved. It is shown that the TCFPP-II is a renewal process and its waiting time distribution is identified. The bivariate distributions of the TCFPP-II are derived. Some specific examples for both the processes are discussed. Finally, we present simulations of the sample paths of these processes.

28 citations

Posted Content
TL;DR: It is established that the fractional negative binomial process (FNBP) has the long-range dependence (LRD) property, while the increments of the FNBP have the SRD property.
Abstract: We study the long-range dependence (LRD) of the increments of the fractional Poisson process (FPP), the fractional negative binomial process (FNBP) and the increments of the FNBP. We first point out an error in the proof of Theorem 1 of Biard and Saussereau (2014) and prove that the increments of the FPP has indeed the short-range dependence (SRD) property, when the fractional index $\beta$ satisfies $0<\beta<\frac{1}{3}$. We also establish that the FNBP has the LRD property, while the increments of the FNBP possesses the SRD property.

25 citations

Journal ArticleDOI
TL;DR: In this article, the Poisson process of order k (PPoK) time-changed with an independent Levy subordinator and its inverse was studied, which they called TCPPoK-I and TCPPoK-II.
Abstract: In this article, we study the Poisson process of order k (PPoK) time-changed with an independent Levy subordinator and its inverse, which we call, respectively, as TCPPoK-I and TCPPoK-II, t...

18 citations

References
More filters
Book
02 Mar 2006
TL;DR: In this article, the authors present a method for solving Fractional Differential Equations (DFE) using Integral Transform Methods for Explicit Solutions to FractionAL Differentially Equations.
Abstract: 1. Preliminaries. 2. Fractional Integrals and Fractional Derivatives. 3. Ordinary Fractional Differential Equations. Existence and Uniqueness Theorems. 4. Methods for Explicitly solving Fractional Differential Equations. 5. Integral Transform Methods for Explicit Solutions to Fractional Differential Equations. 6. Partial Fractional Differential Equations. 7. Sequential Linear Differential Equations of Fractional Order. 8. Further Applications of Fractional Models. Bibliography Subject Index

11,492 citations

Book
13 Nov 1999

3,839 citations