scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Fractional Poisson Process Time-Changed by Lévy Subordinator and Its Inverse

TL;DR: In this paper, the authors studied the fractional Poisson process (FPP) time-changed by an independent Levy subordinator and the inverse of the Levy subordinators, which they call TCFPP-I and TC FPP-II, respectively.
Abstract: In this paper, we study the fractional Poisson process (FPP) time-changed by an independent Levy subordinator and the inverse of the Levy subordinator, which we call TCFPP-I and TCFPP-II, respectively. Various distributional properties of these processes are established. We show that, under certain conditions, the TCFPP-I has the long-range dependence property, and also its law of iterated logarithm is proved. It is shown that the TCFPP-II is a renewal process and its waiting time distribution is identified. The bivariate distributions of the TCFPP-II are derived. Some specific examples for both the processes are discussed. Finally, we present simulations of the sample paths of these processes.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the Poisson process of order k (PPoK) time-changed with an independent Levy subordinator and its inverse was studied, which they called TCPPoK-I and TCPPoK-II.
Abstract: In this article, we study the Poisson process of order k (PPoK) time-changed with an independent Levy subordinator and its inverse, which we call, respectively, as TCPPoK-I and TCPPoK-II, t...

18 citations

Journal ArticleDOI
TL;DR: The space-time fractional Poisson process (STFPP) as mentioned in this paper is a generalization of the TFPP and the space fractional poisson process, defined by Orsingher and Poilto (2012).
Abstract: The space-time fractional Poisson process (STFPP), defined by Orsingher and Poilto (2012), is a generalization of the time fractional Poisson process (TFPP) and the space fractional Poisson...

8 citations

Journal ArticleDOI
TL;DR: In this paper, the Linnik Levy process (LLP) is proposed to model leptokurtic data with heavy-tailed behavior, and the authors give a step-by-step procedure of the parameters estimation and calibrate the parameters of the LLP with the Arconic Inc equity data taken from Yahoo finance.
Abstract: In the literature, the Linnik, Mittag-Leffler, Laplace and asymmetric Laplace distributions are the most known examples of geometric stable distributions. The geometric stable distributions are especially useful in the modeling of leptokurtic data with heavy-tailed behavior. They have found many interesting applications in the modeling of several physical phenomena and financial time-series. In this paper, we define the Linnik Levy process (LLP) through the subordination of symmetric stable Levy motion with gamma process. We discuss main properties of LLP like probability density function, Levy measure and asymptotic forms of marginal densities. We also consider the governing fractional-type Fokker–Planck equation. To show practical applications, we simulate the sample paths of the introduced process. Moreover, we give a step-by-step procedure of the parameters estimation and calibrate the parameters of the LLP with the Arconic Inc equity data taken from Yahoo finance. Further, some extensions of the introduced process are also discussed.

6 citations

Dissertation
13 Jul 2018
TL;DR: In this article, a fractional non-homogeneous Poisson process (FNPP) was introduced by applying a random time change to the standard poisson process and the authors derived its non-local governing equation.
Abstract: The thesis is devoted to non-stationary point process models as generalizations of the standard homogeneous Poisson process. The work can be divided in two parts. In the first part, we introduce a fractional non-homogeneous Poisson process (FNPP) by applying a random time change to the standard Poisson process. We characterize the FNPP by deriving its non-local governing equation. We further compute moments and covariance of the process and discuss the distribution of the arrival times. Moreover, we give both finite-dimensional and functional limit theorems for the FNPP and the corresponding fractional non-homogeneous compound Poisson process. The limit theorems are derived by using martingale methods, regular variation properties and Anscombe's theorem. Eventually, some of the limit results are verified via a Monte-Carlo simulation. In the second part, we analyze statistical point process models for durations between trades recorded in financial high-frequency trading data. We consider parameter settings for models which are non-stationary or very close to non-stationarity which is quite typical for estimated parameter sets of models fitted to financial data. Simulation, parameter estimation and in particular model selection are discussed for the following three models: a non-homogeneous normal compound Poisson process, the exponential autoregressive conditional duration model (ACD) and a Hawkes process model. In a Monte-Carlo simulation, we test the performance of the following information criteria for model selection: Akaike's information criterion, the Bayesian information criterion and the Hannan-Quinn information criterion. We are particularly interested in the relation between the rate of correct model selection and the underlying sample size. Our numerical results show that the model selection for the compound Poisson type model works best for small parameter numbers. Moreover, the results for Hawkes processes confirm the theoretical asymptotic distributions of model selection whereas for the ACD model the model selection exhibits adverse behavior in certain cases.

4 citations

Journal ArticleDOI
01 May 2020
TL;DR: In this article, the compound Poisson processes of order $k$ (CPPoK) were introduced and its properties were discussed, using mixture of tempered stable subordinator and its right continuous inverse, the two subordinated CPPoK with various distributional properties were studied.
Abstract: In this article, the compound Poisson processes of order $k$ (CPPoK) is introduced and its properties are discussed. Further, using mixture of tempered stable subordinator (MTSS) and its right continuous inverse, the two subordinated CPPoK with various distributional properties are studied. It is also shown that space and tempered space fractional versions of CPPoK and PPoK can be obtained, which generalize the results in the literature.

3 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the inverse of the Laplace transform of a nondecreasing Levy process is calculated using the Post-Widder inversion (PWIN) formula.
Abstract: Let {D(s), s ≥ 0} be a non-decreasing Levy process. The first-hitting time process {E(t), t ≥ 0} (which is sometimes referred to as an inverse subordinator) defined by $E(t) = \inf \{s: D(s) > t \}$ is a process which has arisen in many applications. Of particular interest is the mean first-hitting time $U(t)=\mathbb{E}E(t)$ . This function characterizes all finite-dimensional distributions of the process E. The function U can be calculated by inverting the Laplace transform of the function $\widetilde{U}(\lambda) = (\lambda \phi(\lambda))^{-1}$ , where ϕ is the Levy exponent of the subordinator D. In this paper, we give two methods for computing numerically the inverse of this Laplace transform. The first is based on the Bromwich integral and the second is based on the Post-Widder inversion formula. The software written to support this work is available from the authors and we illustrate its use at the end of the paper.

40 citations

Journal ArticleDOI
TL;DR: In this article, the short-range dependence (SRD) property of the increments of the fractional Poisson process was discussed, and it was shown that fractional negative binomial process (FNBP) has the same property.
Abstract: We discuss the short-range dependence (SRD) property of the increments of the fractional Poisson process, called the fractional Poissonian noise. We also establish that the fractional negative binomial process (FNBP) has the long-range dependence (LRD) property, while the increments of the FNBP have the SRD property. Our definitions of the SRD/LRD properties are similar to those for a stationary process and different from those recently used in Biard and Saussereau (2014).

35 citations

Posted Content
TL;DR: In this paper, the first-hitting time of a tempered β-stable subordinator, also called inverse tempered stable (ITS) subordinator is considered, and the limiting form of the ITS density, as the space variable $x\rightarrow 0$, and its $k$-th order derivatives are obtained.
Abstract: We consider the first-hitting time of a tempered $\beta$-stable subordinator, also called inverse tempered stable (ITS) subordinator. The density function of the ITS subordinator is obtained, for the index of stability $\beta \in (0,1)$. The series representation of the ITS density is also obtained, which could be helpful for computational purposes. The asymptotic behaviors of the $q$-th order moments of the ITS subordinator are investigated. In particular, the limiting behaviors of the mean of the ITS subordinator is given. The limiting form of the ITS density, as the space variable $x\rightarrow 0$, and its $k$-th order derivatives are obtained. The governing PDE for the ITS density is also obtained. The corresponding known results for inverse stable subordinator follow as special cases.

35 citations

Journal ArticleDOI
TL;DR: In this paper, a martingale characterization for the Fractional Poisson process on the plane is given, and the authors extend this result to Fractionally Poisson fields, obtaining some other characterizations.
Abstract: We present new properties for the Fractional Poisson process and the Fractional Poisson field on the plane. A martingale characterization for Fractional Poisson processes is given. We extend this result to Fractional Poisson fields, obtaining some other characterizations. The fractional differential equations are studied. We consider a more general Mixed-Fractional Poisson process and show that this process is the stochastic solution of a system of fractional differential-difference equations. Finally, we give some simulations of the Fractional Poisson field on the plane.

32 citations

Journal ArticleDOI
TL;DR: In this paper, two processes are constructed as the superposition of fractional Brownian motion (FBM) and other process, and the internal process is the gamma process and the external process is its inverse.
Abstract: Many real time-series exhibit behavior adequate to long range dependent data. Additionally very often these time-series have constant time periods and also have characteristics similar to Gaussian processes although they are not Gaussian. Therefore there is need to consider new classes of systems to model these kinds of empirical behavior. Motivated by this fact in this paper we analyze two processes which exhibit long range dependence property and have additional interesting characteristics which may be observed in real phenomena. Both of them are constructed as the superposition of fractional Brownian motion (FBM) and other process. In the first case the internal process, which plays role of the time, is the gamma process while in the second case the internal process is its inverse. We present in detail their main properties paying main attention to the long range dependence property. Moreover, we show how to simulate these processes and estimate their parameters. We propose to use a novel method based on rescaled modified cumulative distribution function for estimation of parameters of the second considered process. This method is very useful in description of rounded data, like waiting times of subordinated processes delayed by inverse subordinators. By using the Monte Carlo method we show the effectiveness of proposed estimation procedures. Finally, we present the applications of proposed models to real time series.

32 citations