scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Free convection and radiation effects in nanofluid (Silicon dioxide and Molybdenum disulfide) with second order velocity slip, entropy generation, Darcy-Forchheimer porous medium

TL;DR: In this paper, communication, mathematical modeling and numerical simulation are presented for the steady, incompressible two-dimensional Darcy-Forchheimer nanofluid flow of viscous material towards a stretched surface.
About: This article is published in International Journal of Hydrogen Energy.The article was published on 2021-01-01. It has received 104 citations till now. The article focuses on the topics: Nusselt number & Bejan number.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the effects of thermal radiation and activation energy are also considered for dispersing the nanoparticles within base fluid is a newly approach for implementations of heat transfer and biomedicine/bioengineering.
Abstract: The nanoparticles proved a motivating research area in the fourth generation of the world due to their extensive use in science and infrastructure, such as vehicle cooling, higher heat transfer rates in microchips, food manufacturing, biotechnology, biochemistry, transportation, metrology and nuclear reactors. Dispersing the nanoparticles within base fluid is a newly approach for implementations of heat transfer and biomedicine/bioengineering. The current determination is committed to explore the features of bioconvection in Carreau nanofluid flow under the influence of various thermal consequences. The flow is originated by a stretched cylinder. The characteristics of Cattaneo-Christov heat and mass flux are applied to examine the heat/mass transportation of nanofluid. The effects of thermal radiation and activation energy are also considered. The consequences of Brownian movement and thermophoresis features are analyzed by incorporating Buongiorno’s nanofluid model. The governing partial differential equations are transmuted into the structure of nonlinear ordinary differential equations by introducing suitable transformation. The shooting technique is used to achieve the numerical simulations of nonlinear system. The physical impacts of prominent parameters on velocity, temperature distribution, concentration field and microorganisms profile are examined and captured graphically. The numerical outcomes against various flow quantities are also presented in tabular form. The results convey that a higher temperature profile is observed with larger values of thermal Biot number, exponential base sink parameter and thermal relaxation parameter while a decrement in temperature is noticed with increasing mixed convection parameter. The concentration profile shows an increasing trend with mass concentration parameter and concentration relaxation parameter. Moreover, the microorganism field decline with Peclet number and bioconvection Lewis number.

110 citations

Journal ArticleDOI
TL;DR: In this paper, the irreversibility in MHD convection flow of viscous liquid with melting effect over a stretched surface is investigated and the obtained systems are solved for the convergent solutions through ND-solve method.
Abstract: Melting phenomenon of PCMs (phase change materials) is mostly complemented with resilient variation in density of thermal heat. Thermal energy created from numerous sources can be stored in form of latent heat combination throughout melting process of a phase change materials. Thermal energy can be unconfined during the solidification processes. MPCS (microencapsulated phase change slurry) has noteworthy advantages particularly in high energy density and narrow temperature range for various heat energy application. Melting heat transportation has attracted the consideration of scientists and engineers due to its tremendous applications of technological, solidification, casting and industrial processes. A variety of phase change materials with low cost are commercially accessible and do significant work in different circumstances of temperature. Main motivation here is to investigate irreversibility in MHD convection flow of viscous liquid with melting effect over a stretched surface. Slip condition and Lorentz force behaviors are accounted. Energy expression is developed through dissipation, heat radiation and Joule heating. Irreversibility exploration is modeled through second law of thermodynamics. Brownian diffusion and thermophoresis are taken. First order chemical reaction is deliberated. Nonlinear expressions are reduced to ordinary one employing transformation. The obtained systems are solved for the convergent solutions through ND-solve method. Variation of velocity field, entropy rate, temperature, Bejan number and concentration distribution are scrutinized. Velocity filed rises versus higher melting variable. Larger melting parameter decreases the temperature distribution. Concentration and temperature have similar effects against thermophoresis variable. Bejan number and entropy rate have opposite outcome via melting parameter. Higher radiation parameter reduces the entropy rate. For higher radiation both entropy rate and Bejan number have same effect. Main observations are concluded.

71 citations

Journal ArticleDOI
TL;DR: In this article, a 2D steady, laminar and incompressible flow of magneto-cross nanofluid towards the region of moving thin needle in the occurrence of Darcy-Forchheimer porous medium, Ohmic and viscous dissipation with chemical reaction and mixed convection.
Abstract: Nanofluids have exposed a significant promise in the thermal development of several industrial systems, and at the same time, the flow via needle has major applications in modern construction systems including microstructure electric gadgets and microscale cooling gadgets for thermal migration applications. According to these applications, the current investigation concentrates to deliberate on 2D steady, laminar and incompressible flow of magneto-Cross nanofluid towards the region of moving thin needle in the occurrence of Darcy–Forchheimer porous medium, Ohmic and viscous dissipation with chemical reaction and mixed convection. The new dimensionless similarity variables are introduced to convert the nonlinear expressions governing the flow and transfer of heat. The change in velocity, thermal and concentration profiles for various non-dimensional parameters is deliberated briefly and illustrated with the help of suitable plots. Further, analysis of skin friction and rate of heat transfer is done through graphs. The results obtained are validated by existing works and are found to have a good agreement. The result outcome reveals that advanced values of magnetic parameter and Weissenberg number slowdown the fluid velocity motion. Also, upshot in Brownian motion and thermophoresis parameters improves the thermal profile.

69 citations

Journal ArticleDOI
TL;DR: In this article, the authors report an unsteady and incompressible flow of Williamson nanoliquid in presence of variable thermal characteristics are persuaded by a permeable stretching cylinder.
Abstract: This analysis reports an unsteady and incompressible flow of Williamson nanoliquid in presence of variable thermal characteristics are persuaded by a permeable stretching cylinder. The flow field investigation is established with the effect of mixed convection and non-uniform heat source/sink on flow and heat transfer. On the cylinder surface, the analysis is inspected with utilization of zero mass flux constraints. By using the appropriate similarity variables, the framed equations for the energy, momentum and mass is converted into non-linear ODEs. The numerical communication of the boundary value problem is successfully implemented using a computer algorithm programmed into the fifth Runge-Kutta scheme. Additionally, the wall shear factor and rate of heat transfer are calculated in two different cases namely, with curvature and without curvature. In addition, the results obtained are confirmed by making comparisons with previously published articles and we found an excellent match that guarantees the indemnity of current communication. A comprehensive change in velocity, temperature and concentration is examined for involved parameters like local Weissenberg number, space dependent heat source constant, magnetic number, curvature constant, thermophoretic parameter, buoyancy parameter, Brownian motion parameter, Prandtl number, Schmidt number, unsteadiness parameter, reaction rate parameter, activation energy parameter and temperature difference parameter. A reduction in velocity is observed for unsteady parameter and buoyancy constant. An enhanced nanofluid temperature is noted for space dependent heat source parameter, time dependent heat source parameter and unsteady parameter. Moreover, the nanofluid concentration is increases for temperature difference parameter while reverse observations are noticed for chemical reaction rate.

66 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, temperature dependent thermal conductivity in stagnation point flow toward a nonlinear stretched surface with variable thickness is considered, and convergence series solution for flow of Jeffrey fluid and heat and mass transfer are developed.

649 citations

Journal ArticleDOI
TL;DR: Magnetohydrodynamic (MHD) stagnation point flow of Casson fluid towards a stretching sheet is addressed and Graphical behaviors of velocity, temperature and concentration are analyzed comprehensively.

630 citations

Journal ArticleDOI
TL;DR: In this article, a tridimensionnelle solution for convection libre verticale is presented for Prandtl multiples with entiers entiers de 1/2.
Abstract: On obtient des solutions en forme close pour la distribution de temperature pour tous les nombres de Prandtl multiples entiers de 1/2. On etudie la convection libre verticale. Une solution de similarite tridimensionnelle est presentee pour les equations entieres de Navier-Stokes-Boussinesq

345 citations

Journal ArticleDOI
TL;DR: In this article, a three dimensional similarity solution to the governing momentum and energy equations is presented, and numerical data for the friction factor and Nusselt number has been tabulated for a range of surface mass transfer rates and Prandtl numbers.
Abstract: The natural convective heat transfer from a vertical stretching sheet with surface mass transfer is analyzed. A three dimensional similarity solution to the governing momentum and energy equations is presented. Numerical data for the friction factor and Nusselt number has been tabulated for a range of surface mass transfer rates and Prandtl numbers. Surface mass transfer has a considerable influence on the heat transfer mechanism.

331 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explored the mixed convective flow of viscous fluid by a rotating disk and derived the velocity and thermal gradients at the surface of disk in tabular forms.

256 citations