scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Freestanding carbon fiber cloth/sulfur composites for flexible room-temperature sodium-sulfur batteries

Qiongqiong Lu1, Xinyu Wang1, Jun Cao1, Chen Chen1, Kena Chen1, Zifang Zhao1, Zhiqiang Niu1, Jun Chen1 
01 Jul 2017-Energy Storage Materials (Elsevier)-Vol. 8, pp 77-84
TL;DR: In this paper, carbon fiber cloth/sulfur (CFC/S) composites were prepared by loading sulfur in the CFC that was obtained by carbonizing the renewable cotton cloth.
About: This article is published in Energy Storage Materials.The article was published on 2017-07-01. It has received 166 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: The potential of MXenes for the photocatalytic degradation of organic pollutants in water, such as dye waste, is addressed, along with their promise as catalysts for ammonium synthesis from nitrogen.
Abstract: Transition metal carbides and nitrides (MXenes), a family of two-dimensional (2D) inorganic compounds, are materials composed of a few atomic layers of transition metal carbides, nitrides, or carbonitrides. Ti3C2, the first 2D layered MXene, was isolated in 2011. This material, which is a layered bulk material analogous to graphite, was derived from its 3D phase, Ti3AlC2 MAX. Since then, material scientists have either determined or predicted the stable phases of >200 different MXenes based on combinations of various transition metals such as Ti, Mo, V, Cr, and their alloys with C and N. Extensive experimental and theoretical studies have shown their exciting potential for energy conversion and electrochemical storage. To this end, we comprehensively summarize the current advances in MXene research. We begin by reviewing the structure types and morphologies and their fabrication routes. The review then discusses the mechanical, electrical, optical, and electrochemical properties of MXenes. The focus then turns to their exciting potential in energy storage and conversion. Energy storage applications include electrodes in rechargeable lithium- and sodium-ion batteries, lithium-sulfur batteries, and supercapacitors. In terms of energy conversion, photocatalytic fuel production, such as hydrogen evolution from water splitting, and carbon dioxide reduction are presented. The potential of MXenes for the photocatalytic degradation of organic pollutants in water, such as dye waste, is also addressed, along with their promise as catalysts for ammonium synthesis from nitrogen. Finally, their application potential is summarized.

1,201 citations

Journal ArticleDOI
TL;DR: This review has summarized the recent progress of flexible Li-S and analogous batteries, and emphasized the importance of cell packaging and flexibility evaluation, and two special flexible battery prototypes of foldable and cable-typeLi-S batteries are highlighted.
Abstract: Flexible energy storage systems are imperative for emerging flexible devices that are revolutionizing our life. Lithium-ion batteries, the current main power sources, are gradually approaching their theoretical limitation in terms of energy density. Therefore, alternative battery chemistries are urgently required for next-generation flexible power sources with high energy densities, low cost, and inherent safety. Flexible lithium–sulfur (Li–S) batteries and analogous flexible alkali metal–chalcogen batteries are of paramount interest owing to their high energy densities endowed by multielectron chemistry. In this review, we summarized the recent progress of flexible Li–S and analogous batteries. A brief introduction to flexible energy storage systems and general Li–S batteries has been provided first. Progress in flexible materials for flexible Li–S batteries are reviewed subsequently, with a detailed classification of flexible sulfur cathodes as those based on carbonaceous (e.g., carbon nanotubes, graphene, and carbonized polymers) and composite (polymers and inorganics) materials and an overview of flexible lithium anodes and flexible solid-state electrolytes. Advancements in other flexible alkali metal–chalcogen batteries are then introduced. In the next part, we emphasize the importance of cell packaging and flexibility evaluation, and two special flexible battery prototypes of foldable and cable-type Li–S batteries are highlighted. In the end, existing challenges and future development of flexible Li–S and analogous alkali metal–chalcogen batteries are summarized and prospected.

525 citations

Journal ArticleDOI
TL;DR: A room-temperature sodium–sulfur battery with high electrochemical performances and enhanced safety is reported by employing a “cocktail optimized” electrolyte system, containing propylene carbonate and fluoroethylene carbonate as co-solvents, highly concentrated sodium salt, and indium triiodide as an additive.
Abstract: High-temperature sodium–sulfur batteries operating at 300–350 °C have been commercially applied for large-scale energy storage and conversion. However, the safety concerns greatly inhibit their widespread adoption. Herein, we report a room-temperature sodium–sulfur battery with high electrochemical performances and enhanced safety by employing a “cocktail optimized” electrolyte system, containing propylene carbonate and fluoroethylene carbonate as co-solvents, highly concentrated sodium salt, and indium triiodide as an additive. As verified by first-principle calculation and experimental characterization, the fluoroethylene carbonate solvent and high salt concentration not only dramatically reduce the solubility of sodium polysulfides, but also construct a robust solid-electrolyte interface on the sodium anode upon cycling. Indium triiodide as redox mediator simultaneously increases the kinetic transformation of sodium sulfide on the cathode and forms a passivating indium layer on the anode to prevent it from polysulfide corrosion. The as-developed sodium–sulfur batteries deliver high capacity and long cycling stability.

335 citations

Journal ArticleDOI
TL;DR: A sulfur host comprised of atomic cobalt-decorated hollow carbon nanospheres is synthesized to enhance sulfur reactivity and to electrocatalytically reduce polysulfide into the final product, sodium sulfide.
Abstract: The low-cost room-temperature sodium-sulfur battery system is arousing extensive interest owing to its promise for large-scale applications. Although significant efforts have been made, resolving low sulfur reaction activity and severe polysulfide dissolution remains challenging. Here, a sulfur host comprised of atomic cobalt-decorated hollow carbon nanospheres is synthesized to enhance sulfur reactivity and to electrocatalytically reduce polysulfide into the final product, sodium sulfide. The constructed sulfur cathode delivers an initial reversible capacity of 1081 mA h g−1 with 64.7% sulfur utilization rate; significantly, the cell retained a high reversible capacity of 508 mA h g−1 at 100 mA g−1 after 600 cycles. An excellent rate capability is achieved with an average capacity of 220.3 mA h g−1 at the high current density of 5 A g−1. Moreover, the electrocatalytic effects of atomic cobalt are clearly evidenced by operando Raman spectroscopy, synchrotron X-ray diffraction, and density functional theory. Room-temperature sodium-sulfur batteries hold promise, but are hindered by low reversible capacity and fast capacity fade. Here the authors construct a multifunctional sulfur host comprised of cobalt-decorated carbon nanospheres that impart attractive performance as a cathode in a sodium sulfide battery.

282 citations

Journal ArticleDOI
TL;DR: This review summarizes the fabrication techniques of carbon-based fibers, especially carbon nanofibers, carbon-nanotube- based fibers, and graphene-based fiber, and various strategies for improving their mechanical, electrical, and electrochemical performance.
Abstract: Advanced electrochemical energy storage devices (EESDs) that can store electrical energy efficiently while being miniature/flexible/wearable/load-bearing are much needed for various applications ranging from flexible/wearable/portable electronics to lightweight electric vehicles/aerospace equipment. Carbon-based fibers hold great promise in the development of these advanced EESDs (e.g., supercapacitors and batteries) due to their being lightweight, high electrical conductivity, excellent mechanical strength, flexibility, and tunable electrochemical performance. This review summarizes the fabrication techniques of carbon-based fibers, especially carbon nanofibers, carbon-nanotube-based fibers, and graphene-based fibers, and various strategies for improving their mechanical, electrical, and electrochemical performance. The design, assembly, and potential applications of advanced EESDs from these carbon-based fibers are highlighted. Finally, the challenges and future opportunities of carbon-based fibers for advanced EESDs are discussed.

273 citations

References
More filters
Journal ArticleDOI
06 Feb 2008-Nature
TL;DR: Researchers must find a sustainable way of providing the power their modern lifestyles demand to ensure the continued existence of clean energy sources.
Abstract: Researchers must find a sustainable way of providing the power our modern lifestyles demand.

15,980 citations

Journal ArticleDOI
TL;DR: The energy that can be stored in Li-air and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed.
Abstract: Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Li-air (O(2)) and Li-S. The energy that can be stored in Li-air (based on aqueous or non-aqueous electrolytes) and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li-air and Li-S justify the continued research effort that will be needed.

7,895 citations

Journal ArticleDOI

3,654 citations

Journal ArticleDOI
TL;DR: In this paper, a review of electrical energy storage technologies for stationary applications is presented, with particular attention paid to pumped hydroelectric storage, compressed air energy storage, battery, flow battery, fuel cell, solar fuel, superconducting magnetic energy storage and thermal energy storage.
Abstract: Electrical energy storage technologies for stationary applications are reviewed. Particular attention is paid to pumped hydroelectric storage, compressed air energy storage, battery, flow battery, fuel cell, solar fuel, superconducting magnetic energy storage, flywheel, capacitor/supercapacitor, and thermal energy storage. Comparison is made among these technologies in terms of technical characteristics, applications and deployment status.

3,031 citations