scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Frequency Centric Defense Mechanisms against Adversarial Examples.

TL;DR: In this article, the authors used the magnitude and phase of the Fourier Spectrum and the entropy of the image to defend against adversarial examples (AE) by training an adversarial detector and denoising the adversarial effect.
Abstract: Adversarial example (AE) aims at fooling a Convolution Neural Network by introducing small perturbations in the input image.The proposed work uses the magnitude and phase of the Fourier Spectrum and the entropy of the image to defend against AE. We demonstrate the defense in two ways: by training an adversarial detector and denoising the adversarial effect. Experiments were conducted on the low-resolution CIFAR-10 and high-resolution ImageNet datasets. The adversarial detector has 99% accuracy for FGSM and PGD attacks on the CIFAR-10 dataset. However, the detection accuracy falls to 50% for sophisticated DeepFool and Carlini & Wagner attacks on ImageNet. We overcome the limitation by using autoencoder and show that 70% of AEs are correctly classified after denoising.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , the authors show that the results of clustering algorithms may not generally be trustworthy unless there is a standardized and fixed prescription to use a specific distance function, and demonstrate that the problem is solvable by constructing a metric to simultaneously give desired pairwise distances between up to $O(sqrt\ell)$ many points in the Euclidean space.
Abstract: Given a set of points in the Euclidean space $\mathbb{R}^\ell$ with $\ell>1$, the pairwise distances between the points are determined by their spatial location and the metric $d$ that we endow $\mathbb{R}^\ell$ with. Hence, the distance $d(\mathbf x,\mathbf y)=\delta$ between two points is fixed by the choice of $\mathbf x$ and $\mathbf y$ and $d$. We study the related problem of fixing the value $\delta$, and the points $\mathbf x,\mathbf y$, and ask if there is a topological metric $d$ that computes the desired distance $\delta$. We demonstrate this problem to be solvable by constructing a metric to simultaneously give desired pairwise distances between up to $O(\sqrt\ell)$ many points in $\mathbb{R}^\ell$. We then introduce the notion of an $\varepsilon$-semimetric $\tilde{d}$ to formulate our main result: for all $\varepsilon>0$, for all $m\geq 1$, for any choice of $m$ points $\mathbf y_1,\ldots,\mathbf y_m\in\mathbb{R}^\ell$, and all chosen sets of values $\{\delta_{ij}\geq 0: 1\leq i

1 citations

Proceedings ArticleDOI
18 Jul 2022
TL;DR: An iterative approach to generate a patch that when digitally placed on the face can successfully fool the facial recognition system and can generate inconspicuous natural looking patch with comparable fool rate and smallest patch size.
Abstract: Researchers are increasingly interested to study novel attacks on machine learning models. The classifiers are fooled by making small perturbation to the input or by learning patches that can be applied to objects. In this paper we present an iterative approach to generate a patch that when digitally placed on the face can successfully fool the facial recognition system. We focus on dodging attack where a target face is misidentified as any other face. The proof of concept is show-cased using FGSM and FaceNet face recognition system under the white-box attack. The framework is generic and it can be extended to other noise model and recognition system. It has been evaluated for different - patch size, noise strength, patch location, number of patches and dataset. The experiments shows that the proposed approach can significantly lower the recognition accuracy. Compared to state of the art digital-world attacks, the proposed approach is simpler and can generate inconspicuous natural looking patch with comparable fool rate and smallest patch size.

1 citations

Proceedings ArticleDOI
07 Nov 2022
TL;DR: In this paper , the authors explore adding extra noise and filtering operations to differentiate between benign and adversarial examples, and find that adding lightweight noise affects the classification probability of adversarial samples more than benign ones.
Abstract: The state-of-the-art techniques create adversarial examples with a very low-intensity noise making the detection very hard. In the proposed work, we explore adding extra noise and filtering operations to differentiate between benign and adversarial examples. We hypothesize that adding lightweight noise affects the classification probability of adversarial examples more than benign ones. The proposed architecture uses them as features to train a binary classifier and detect adversarial examples in high-resolution, real-world images. Specifically, we look at beneficial noise generated through targeted adversarial attacks and noise from JPEG compression to perturb adversarial examples. Our standard classifier was able to distinguish benign and adversarial for BIM, PGD, and DeepFool in, approximately, 96.5%, 97%, and 85% of the cases, respectively, on high-resolution images from the ImageNet dataset.
Journal ArticleDOI
TL;DR: The Intermediate Layer Attack with Attention guidance (IAA) is proposed to alleviate overfitting and enhance the black-box transferability of deep learning models and outperformed all state-of-the-art benchmarks in various white-box and black- box settings.
Abstract: The widespread deployment of deep learning models in practice necessitates an assessment of their vulnerability, particularly in security-sensitive areas. As a result, transfer-based adversarial attacks have elicited increasing interest in assessing the security of deep learning models. However, adversarial samples usually exhibit poor transferability over different models because of overfitting of the particular architecture and feature representation of a source model. To address this problem, the Intermediate Layer Attack with Attention guidance (IAA) is proposed to alleviate overfitting and enhance the black-box transferability. The IAA works on an intermediate layer $l$ of the source model. Guided by the model’s attention (i.e., gradients) to the features of layer $l$ , the attack algorithm seeks and undermines the key features that are likely to be adopted by diverse architectures. Significantly, IAA focuses on improving existing white-box attacks without introducing significant visual perceptual quality degradation. Namely, IAA maintains the white-box attack performance of the original algorithm while significantly enhancing its black-box transferability. Extensive experiments on ImageNet classifiers confirmed the effectiveness of our method. The proposed IAA outperformed all state-of-the-art benchmarks in various white-box and black-box settings, i.e., improving the success rate of BIM by 29.65% against normally trained models and 27.16% against defense models.
References
More filters
Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Posted Content
TL;DR: This work is exploring ways to scale up networks in ways that aim at utilizing the added computation as efficiently as possible by suitably factorized convolutions and aggressive regularization.
Abstract: Convolutional networks are at the core of most state-of-the-art computer vision solutions for a wide variety of tasks. Since 2014 very deep convolutional networks started to become mainstream, yielding substantial gains in various benchmarks. Although increased model size and computational cost tend to translate to immediate quality gains for most tasks (as long as enough labeled data is provided for training), computational efficiency and low parameter count are still enabling factors for various use cases such as mobile vision and big-data scenarios. Here we explore ways to scale up networks in ways that aim at utilizing the added computation as efficiently as possible by suitably factorized convolutions and aggressive regularization. We benchmark our methods on the ILSVRC 2012 classification challenge validation set demonstrate substantial gains over the state of the art: 21.2% top-1 and 5.6% top-5 error for single frame evaluation using a network with a computational cost of 5 billion multiply-adds per inference and with using less than 25 million parameters. With an ensemble of 4 models and multi-crop evaluation, we report 3.5% top-5 error on the validation set (3.6% error on the test set) and 17.3% top-1 error on the validation set.

15,519 citations

Dissertation
01 Jan 2009
TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Abstract: In this work we describe how to train a multi-layer generative model of natural images. We use a dataset of millions of tiny colour images, described in the next section. This has been attempted by several groups but without success. The models on which we focus are RBMs (Restricted Boltzmann Machines) and DBNs (Deep Belief Networks). These models learn interesting-looking filters, which we show are more useful to a classifier than the raw pixels. We train the classifier on a labeled subset that we have collected and call the CIFAR-10 dataset.

15,005 citations

Proceedings Article
20 Mar 2015
TL;DR: It is argued that the primary cause of neural networks' vulnerability to adversarial perturbation is their linear nature, supported by new quantitative results while giving the first explanation of the most intriguing fact about them: their generalization across architectures and training sets.
Abstract: Several machine learning models, including neural networks, consistently misclassify adversarial examples---inputs formed by applying small but intentionally worst-case perturbations to examples from the dataset, such that the perturbed input results in the model outputting an incorrect answer with high confidence. Early attempts at explaining this phenomenon focused on nonlinearity and overfitting. We argue instead that the primary cause of neural networks' vulnerability to adversarial perturbation is their linear nature. This explanation is supported by new quantitative results while giving the first explanation of the most intriguing fact about them: their generalization across architectures and training sets. Moreover, this view yields a simple and fast method of generating adversarial examples. Using this approach to provide examples for adversarial training, we reduce the test set error of a maxout network on the MNIST dataset.

7,994 citations

Trending Questions (1)
How to defend against frequency monitoring attacks?

The provided paper does not specifically mention "frequency monitoring attacks".