scispace - formally typeset
Search or ask a question
Journal Article•DOI•

Frequency domain equalization for single-carrier broadband wireless systems

TL;DR: This article surveys frequency domain equalization (FDE) applied to single-carrier (SC) modulation solutions and discusses similarities and differences of SC and OFDM systems and coexistence possibilities, and presents examples of SC-FDE performance capabilities.
Abstract: Broadband wireless access systems deployed in residential and business environments are likely to face hostile radio propagation environments, with multipath delay spread extending over tens or hundreds of bit intervals. Orthogonal frequency-division multiplex (OFDM) is a recognized multicarrier solution to combat the effects of such multipath conditions. This article surveys frequency domain equalization (FDE) applied to single-carrier (SC) modulation solutions. SC radio modems with frequency domain equalization have similar performance, efficiency, and low signal processing complexity advantages as OFDM, and in addition are less sensitive than OFDM to RF impairments such as power amplifier nonlinearities. We discuss similarities and differences of SC and OFDM systems and coexistence possibilities, and present examples of SC-FDE performance capabilities.

Content maybe subject to copyright    Report

Citations
More filters
Patent•
20 May 2013
TL;DR: In this article, a backhaul radio has an advanced antenna system for use in PTP or PMP topologies, which provides a significant diversity benefit, including increased transmitter to receiver isolation, adaptive polarization and MIMO transmission equalization.
Abstract: A intelligent backhaul radio have an advanced antenna system for use in PTP or PMP topologies. The antenna system provides a significant diversity benefit. Antenna configurations are disclosed that provide for increased transmitter to receiver isolation, adaptive polarization and MIMO transmission equalization. Adaptive optimization of transmission parameters based upon side information provided in the form of metric feedback from a far end receiver utilizing the antenna system is also disclosed.

6 citations

Journal Article•DOI•
Minjoong Rim1•
TL;DR: A random access scheme in which a short OFDMA symbol is transmitted to maintain the orthogonality with timing offsets is proposed.
Abstract: If ranging processes are not frequent in an uplink OFDMA system, timing synchronization between the base and mobile stations may not be maintained and the performance may be degraded. This paper proposes a random access scheme in which a short OFDMA symbol is transmitted to maintain the orthogonality with timing offsets. A short symbol is constructed by inserting zero-padding to an OFDMA symbol.

6 citations

01 Jan 2009
TL;DR: The background and some of the striking early development of OFDM are described, with explanation of the motivations for using it.
Abstract: Orthogonal frequency-division multiplexing (OFDM) is one of those ideas that had been building for a very long time, and became a practical reality when the appearance of mass market applications coincided with the availability of efficient software and electronic technologies. This article describes the background and some of the striking early development of OFDM, with explanation of the motivations for using it. I presume a broad definition of OFDM as frequency-division multiplexing (FDM) in which subchannels overlap without interfering. It does not not necessarily require the discrete Fourier transform (DFT) or its fast Fourier transform (FFT) computational method.

6 citations

Proceedings Article•DOI•
01 Sep 2006
TL;DR: For high spectrum efficiency, the transmit power allocation and the adaptive modulation based on the equivalent channel gains after performing FDE are applied and the transmission performance of the frequency-domain E-SDM in a severe frequency-selective Rayleigh fading channel is evaluated by computer simulation.
Abstract: In wireless communications, the channel consists of many resolvable paths with different time delays, resulting in a severely frequency-selective fading channel. The frequency-domain equalization (FDE) can take advantage of the channel selectivity and improve the bit error rate (BER) performance of the single-carrier (SC) transmission. Recently, multi-input multi-output (MIMO) multiplexing is gaining much attention for achieving very high speed data transmissions under limited bandwidth. Eigenbeam space division multiplexing (E-SDM) is known as one of MIMO multiplexing techniques. In this paper, we propose frequency-domain E-SDM for SC transmission. In frequency-domain E-SDM, the orthogonal transmission channels to transmit different data in parallel are constructed at each orthogonal frequency. At a receiver, FDE is used to suppress the ISI. In this paper, for high spectrum efficiency, the transmit power allocation and the adaptive modulation based on the equivalent channel gains after performing FDE are applied. The transmission performance of the frequency-domain E-SDM in a severe frequency-selective Rayleigh fading channel is evaluated by computer simulation.

6 citations


Cites background from "Frequency domain equalization for s..."

  • ...Recently, it has been shown that the use of frequency-domain equalization (FDE) can significantly improve the BER performance of SC transmission [8]....

    [...]

Journal Article•DOI•
TL;DR: Results show that the VRA system can achieve higher ergodic capacity and outage rate than conventional overloaded MIMO system and a potential performance gain for its system capacity and performance bound.
Abstract: Layered space time processing in spatial multiplexing systems requires the number of receive antennas to be equal to or larger than the number of transmit antennas. However, it is impractical for small-sized mobile units to accommodate a large number of antennas. To loosen this stringent requirement, a novel concept of virtual receive antennas (VRA) for overloaded MIMO system is presented. The VRA system architecture consists of two major parts: fractional timing offset in the transmitter and oversampling at the receive matched filter. This procedure expands the received signal dimension and thus creates virtual receive antennas. Due to these created virtual receive antennas, the minimum number of physical receive antennas could be reduced. In order to explore the potential of VRA, this paper evaluates its system capacity and performance bound. Results show that the VRA system can achieve higher ergodic capacity and outage rate than conventional overloaded MIMO system. Performance analysis also suggests a potential performance gain for the VRA system. To eliminate the created inter-symbol interference in the VRA, time domain and frequency domain equalization are utilized and evaluated.

6 citations


Cites methods from "Frequency domain equalization for s..."

  • ...Although the PIC and FDE process can be performed iteratively, it is only performed once as simulations show that more iteration cannot further improve the performance....

    [...]

  • ...2) The remaining FD signal becomes a single-input singleoutput (SISO) source, and is equalized using SISO MMSE FDE [24]....

    [...]

  • ...An OSIC FDE with parallel interference cancellation (PIC) modified from [25] and [26] is proposed here, and named as FD-OSIC-PIC....

    [...]

  • ...Time domain equalization (TDE) and frequency domain equalization (FDE) are explored to equalize the ISI and detect the transmitted symbols....

    [...]

  • ...Comparing to TD-OSIC-FDE, MLD only has a lower complexity when the number of transmit antenna is 2 and a roll off factor of 0.35....

    [...]

References
More filters
Book•
01 Jan 1986
TL;DR: In this paper, the authors propose a recursive least square adaptive filter (RLF) based on the Kalman filter, which is used as the unifying base for RLS Filters.
Abstract: Background and Overview. 1. Stochastic Processes and Models. 2. Wiener Filters. 3. Linear Prediction. 4. Method of Steepest Descent. 5. Least-Mean-Square Adaptive Filters. 6. Normalized Least-Mean-Square Adaptive Filters. 7. Transform-Domain and Sub-Band Adaptive Filters. 8. Method of Least Squares. 9. Recursive Least-Square Adaptive Filters. 10. Kalman Filters as the Unifying Bases for RLS Filters. 11. Square-Root Adaptive Filters. 12. Order-Recursive Adaptive Filters. 13. Finite-Precision Effects. 14. Tracking of Time-Varying Systems. 15. Adaptive Filters Using Infinite-Duration Impulse Response Structures. 16. Blind Deconvolution. 17. Back-Propagation Learning. Epilogue. Appendix A. Complex Variables. Appendix B. Differentiation with Respect to a Vector. Appendix C. Method of Lagrange Multipliers. Appendix D. Estimation Theory. Appendix E. Eigenanalysis. Appendix F. Rotations and Reflections. Appendix G. Complex Wishart Distribution. Glossary. Abbreviations. Principal Symbols. Bibliography. Index.

16,062 citations


"Frequency domain equalization for s..." refers methods in this paper

  • ...Adaptation can be done with LMS (least mean square), RLS, or least squares minimization (LS) techniques, analogous to adaptation of time domain equalizers [Hay96], [Cla98]....

    [...]

  • ...Overlap-save or overlap-add signal processing techniques could also be used to avoid the extra overhead of the cyclic prefix [Fer85], [Hay96]....

    [...]

Journal Article•DOI•
Jr. L.J. Cimini1•
TL;DR: The analysis and simulation of a technique for combating the effects of multipath propagation and cochannel interference on a narrow-band digital mobile channel using the discrete Fourier transform to orthogonally frequency multiplex many narrow subchannels, each signaling at a very low rate, into one high-rate channel is discussed.
Abstract: This paper discusses the analysis and simulation of a technique for combating the effects of multipath propagation and cochannel interference on a narrow-band digital mobile channel. This system uses the discrete Fourier transform to orthogonally frequency multiplex many narrow subchannels, each signaling at a very low rate, into one high-rate channel. When this technique is used with pilot-based correction, the effects of flat Rayleigh fading can be reduced significantly. An improvement in signal-to-interference ratio of 6 dB can be obtained over the bursty Rayleigh channel. In addition, with each subchannel signaling at a low rate, this technique can provide added protection against delay spread. To enhance the behavior of the technique in a heavily frequency-selective environment, interpolated pilots are used. A frequency offset reference scheme is employed for the pilots to improve protection against cochannel interference.

2,627 citations


"Frequency domain equalization for s..." refers background in this paper

  • ...OFDM transmits multiple modulated subcarriers in parallel [ 1 ]....

    [...]

  • ...Several variations of orthogonal frequency-division multiplexing (OFDM) have been proposed as effective anti-multipath techniques, primarily because of the favorable trade-off they offer between performance in severe multipath and signal processing complexity [ 1 ]....

    [...]

Book•
Simon Haykin1•
01 Mar 1991

2,447 citations

Journal Article•DOI•
TL;DR: In this contribution the transmission of M-PSK and M-QAM modulated orthogonal frequency division multiplexed (OFDM) signals over an additive white Gaussian noise (AWGN) channel is considered and the degradation of the bit error rate is evaluated.
Abstract: In this contribution the transmission of M-PSK and M-QAM modulated orthogonal frequency division multiplexed (OFDM) signals over an additive white Gaussian noise (AWGN) channel is considered. The degradation of the bit error rate (BER), caused by the presence of carrier frequency offset and carrier phase noise is analytically evaluated. It is shown that for a given BER degradation, the values of the frequency offset and the linewidth of the carrier generator that are allowed for OFDM are orders of magnitude smaller than for single carrier systems carrying the same bit rate. >

1,816 citations

Journal Article•DOI•
D. Chu1•
TL;DR: This correspondence describes the construction of complex codes of the form exp i \alpha_k whose discrete circular autocorrelations are zero for all nonzero lags.
Abstract: This correspondence describes the construction of complex codes of the form exp i \alpha_k whose discrete circular autocorrelations are zero for all nonzero lags. There is no restriction on code lengths.

1,624 citations