scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Frequency domain equalization for single-carrier broadband wireless systems

TL;DR: This article surveys frequency domain equalization (FDE) applied to single-carrier (SC) modulation solutions and discusses similarities and differences of SC and OFDM systems and coexistence possibilities, and presents examples of SC-FDE performance capabilities.
Abstract: Broadband wireless access systems deployed in residential and business environments are likely to face hostile radio propagation environments, with multipath delay spread extending over tens or hundreds of bit intervals. Orthogonal frequency-division multiplex (OFDM) is a recognized multicarrier solution to combat the effects of such multipath conditions. This article surveys frequency domain equalization (FDE) applied to single-carrier (SC) modulation solutions. SC radio modems with frequency domain equalization have similar performance, efficiency, and low signal processing complexity advantages as OFDM, and in addition are less sensitive than OFDM to RF impairments such as power amplifier nonlinearities. We discuss similarities and differences of SC and OFDM systems and coexistence possibilities, and present examples of SC-FDE performance capabilities.

Content maybe subject to copyright    Report

Citations
More filters
01 Jan 2016
TL;DR: In single-carrier modulation system with frequency domain equalization, Decision Feedback Equalizer with a Hybrid time-frequency structure (H-DFE) is attractive for its performance; the complexity is also significant, especially for very dispersive channels.
Abstract: In single-carrier modulation system with frequency domain equalization, Decision Feedback Equalizer with a Hybrid time-frequency structure (H-DFE) is attractive for its performance; the complexity is also significant, especially for very dispersive channels. Iterative Block Decision Feedback Equalizer with Hard Detection (HD-IBDFE) system performance degrades caused by errors in symbol decision and it needs to calculate the correlation factor of the transmitted and hard detected data. To solve these problems, Iterative Block Decision Feedback Equalizer with Soft Detection (SD-IBDFE) is introduced to improve the system performance. The receiver feedbacks the soft information of the equalizer's output. The iterative channel estimation is adopted in order to deal with the time-varying underwater acoustic channels. Simulation results show that SD-IBDFE is superior to HD-IBDFE obviously for underwater acoustic channel. One underwater acoustic communication system is designed and tested in the lake. At a distance of 1.8 km with complex channel condition, the useful data rate of around 3000 bps is achieved with uncoded bit error rates 3 10 − in lake experiment.

2 citations

Proceedings ArticleDOI
01 Sep 2017
TL;DR: This paper considers the uplink of broadband massive MIMO systems employing SC-FDE schemes, where multiple users transmit to a single base station with a large number of antennas, and proposes low-complexity frequency-domain detection schemes that allow excellent performance, but do not require matrix inversions.
Abstract: Reduced-complexity implementations are critical for massive MIMO (Multiple Input, Multiple Output) systems. In this paper we consider the uplink of broadband massive MIMO systems employing SC-FDE (Single-Carrier with Frequency-Domain Equalization) schemes, where multiple users transmit to a single base station with a large number of antennas. We propose low-complexity frequency-domain detection schemes that allow excellent performance, but do not require matrix inversions.

2 citations


Cites background from "Frequency domain equalization for s..."

  • ...SC-FDE (Single-Carrier with FrequencyDomain Equalization) is recognized as a promising technique for the uplink transmission since the frequency-domain receiver implementation makes it suitable for severely timedispersive channels and the transmitted signals have much lower envelope fluctuations than OFDM (Orthogonal Frequency Division Multiplexing) signals, allowing an efficient power amplification [7], [8]....

    [...]

Proceedings ArticleDOI
17 May 2009
TL;DR: This paper studies the performance of an innovative Frequency Domain receiver for IEEE 802.15.4a short-range communications and takes benefit of the guard intervals which are introduced in the standard between the symbols, so avoiding the need of the cyclic prefix introduction at the transmitter.
Abstract: In this paper we study the performance of an innovative Frequency Domain (FD) receiver for IEEE 802.15.4a short-range communications. The proposed system takes benefit of the guard intervals which are introduced in the standard between the symbols, so avoiding the need of the cyclic prefix introduction at the transmitter. The proposed receiver strategy is based on the Minimum Mean Square Error (MMSE) criterion and is compared with the classical rake, considering a scenario where a coordinator communicates with several devices in a short range environment. The channel model, which is characterized by severe multipath propagation, has been derived according to the IEEE 802.15.4a recommendations.

2 citations


Cites background from "Frequency domain equalization for s..."

  • ...Frequency Domain (FD) equalization, which has been previously proposed and studied for a single-carrier singleuser environment [7], has been recently considered for shortrange IR communications....

    [...]

Journal ArticleDOI
TL;DR: A novel two time slots distributed time-reversal STBC scheme for amplify-and-forward relay-assisted single-carrier block transmissions over frequency-selective fading channel with better performance than the conventional distributed SC-STBC scheme with minimum-mean-square error FD linear equalisation.
Abstract: Distributed space-time block coding (STBC) is a promising technique for future broadband wireless communication system, because of its substantially improving the reliability of wireless channel by exploiting cooperative spatial diversity. In this study, the authors propose a novel two time slots distributed time-reversal STBC scheme for amplify-and-forward relay-assisted single-carrier (SC) block transmissions over frequency-selective fading channel. They first exploit the discrete Fourier transform extended properties to construct a linear precoding matrix. They then employ a low-complexity suboptimal frequency domain decision feedback equalisation (FD-DFE) to collect potential multipath diversity at high signal-to-noise ratio. Simulation results demonstrate that the proposed scheme provides better performance than the conventional distributed SC-STBC scheme with minimum-mean-square error FD linear equalisation.

2 citations

References
More filters
Book
01 Jan 1986
TL;DR: In this paper, the authors propose a recursive least square adaptive filter (RLF) based on the Kalman filter, which is used as the unifying base for RLS Filters.
Abstract: Background and Overview. 1. Stochastic Processes and Models. 2. Wiener Filters. 3. Linear Prediction. 4. Method of Steepest Descent. 5. Least-Mean-Square Adaptive Filters. 6. Normalized Least-Mean-Square Adaptive Filters. 7. Transform-Domain and Sub-Band Adaptive Filters. 8. Method of Least Squares. 9. Recursive Least-Square Adaptive Filters. 10. Kalman Filters as the Unifying Bases for RLS Filters. 11. Square-Root Adaptive Filters. 12. Order-Recursive Adaptive Filters. 13. Finite-Precision Effects. 14. Tracking of Time-Varying Systems. 15. Adaptive Filters Using Infinite-Duration Impulse Response Structures. 16. Blind Deconvolution. 17. Back-Propagation Learning. Epilogue. Appendix A. Complex Variables. Appendix B. Differentiation with Respect to a Vector. Appendix C. Method of Lagrange Multipliers. Appendix D. Estimation Theory. Appendix E. Eigenanalysis. Appendix F. Rotations and Reflections. Appendix G. Complex Wishart Distribution. Glossary. Abbreviations. Principal Symbols. Bibliography. Index.

16,062 citations


"Frequency domain equalization for s..." refers methods in this paper

  • ...Adaptation can be done with LMS (least mean square), RLS, or least squares minimization (LS) techniques, analogous to adaptation of time domain equalizers [Hay96], [Cla98]....

    [...]

  • ...Overlap-save or overlap-add signal processing techniques could also be used to avoid the extra overhead of the cyclic prefix [Fer85], [Hay96]....

    [...]

Journal ArticleDOI
Jr. L.J. Cimini1
TL;DR: The analysis and simulation of a technique for combating the effects of multipath propagation and cochannel interference on a narrow-band digital mobile channel using the discrete Fourier transform to orthogonally frequency multiplex many narrow subchannels, each signaling at a very low rate, into one high-rate channel is discussed.
Abstract: This paper discusses the analysis and simulation of a technique for combating the effects of multipath propagation and cochannel interference on a narrow-band digital mobile channel. This system uses the discrete Fourier transform to orthogonally frequency multiplex many narrow subchannels, each signaling at a very low rate, into one high-rate channel. When this technique is used with pilot-based correction, the effects of flat Rayleigh fading can be reduced significantly. An improvement in signal-to-interference ratio of 6 dB can be obtained over the bursty Rayleigh channel. In addition, with each subchannel signaling at a low rate, this technique can provide added protection against delay spread. To enhance the behavior of the technique in a heavily frequency-selective environment, interpolated pilots are used. A frequency offset reference scheme is employed for the pilots to improve protection against cochannel interference.

2,627 citations


"Frequency domain equalization for s..." refers background in this paper

  • ...OFDM transmits multiple modulated subcarriers in parallel [ 1 ]....

    [...]

  • ...Several variations of orthogonal frequency-division multiplexing (OFDM) have been proposed as effective anti-multipath techniques, primarily because of the favorable trade-off they offer between performance in severe multipath and signal processing complexity [ 1 ]....

    [...]

Book
Simon Haykin1
01 Mar 1991

2,447 citations

Journal ArticleDOI
TL;DR: In this contribution the transmission of M-PSK and M-QAM modulated orthogonal frequency division multiplexed (OFDM) signals over an additive white Gaussian noise (AWGN) channel is considered and the degradation of the bit error rate is evaluated.
Abstract: In this contribution the transmission of M-PSK and M-QAM modulated orthogonal frequency division multiplexed (OFDM) signals over an additive white Gaussian noise (AWGN) channel is considered. The degradation of the bit error rate (BER), caused by the presence of carrier frequency offset and carrier phase noise is analytically evaluated. It is shown that for a given BER degradation, the values of the frequency offset and the linewidth of the carrier generator that are allowed for OFDM are orders of magnitude smaller than for single carrier systems carrying the same bit rate. >

1,816 citations

Journal ArticleDOI
D. Chu1
TL;DR: This correspondence describes the construction of complex codes of the form exp i \alpha_k whose discrete circular autocorrelations are zero for all nonzero lags.
Abstract: This correspondence describes the construction of complex codes of the form exp i \alpha_k whose discrete circular autocorrelations are zero for all nonzero lags. There is no restriction on code lengths.

1,624 citations