scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Frequency domain equalization for single-carrier broadband wireless systems

TL;DR: This article surveys frequency domain equalization (FDE) applied to single-carrier (SC) modulation solutions and discusses similarities and differences of SC and OFDM systems and coexistence possibilities, and presents examples of SC-FDE performance capabilities.
Abstract: Broadband wireless access systems deployed in residential and business environments are likely to face hostile radio propagation environments, with multipath delay spread extending over tens or hundreds of bit intervals. Orthogonal frequency-division multiplex (OFDM) is a recognized multicarrier solution to combat the effects of such multipath conditions. This article surveys frequency domain equalization (FDE) applied to single-carrier (SC) modulation solutions. SC radio modems with frequency domain equalization have similar performance, efficiency, and low signal processing complexity advantages as OFDM, and in addition are less sensitive than OFDM to RF impairments such as power amplifier nonlinearities. We discuss similarities and differences of SC and OFDM systems and coexistence possibilities, and present examples of SC-FDE performance capabilities.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This letter considers the single-carrier frequency domain equalization (SC-FDE) system, and proposes a low-complexity joint symbol detection and channel estimation algorithm based on the recently proposed vector approximate message passing (VAMP).
Abstract: In this letter, we consider the single-carrier frequency domain equalization (SC-FDE) system, and propose a low-complexity joint symbol detection and channel estimation algorithm based on the recently proposed vector approximate message passing (VAMP). Specifically, we leverage VAMP twice to estimate symbols and channels, respectively, in a turbo-like way. Moreover, this algorithm organically combines the gaussian mixture model (GMM), which can accurately simulate the sparse aggregation characteristics of the channel and effectively suppress inter symbol interference (ISI). The simulation results show that compared with the traditional linear minimum mean square error (LMMSE) estimation receiving algorithm and the existing generalized approximate message passing algorithm (GAMP), the designed receiving algorithm has significant advantages in channel estimation normalized mean square error (NMSE) and bit error ratio (BER) performance, where sharing the same order of complexity.
Journal ArticleDOI
TL;DR: In this paper , a unified waveform framework based on DFT-s-OFDM structure is proposed, and three technical methods (NCP/UW, FDSS, and TD-CE) can be integrated to improve three key performance indicators (KPIs) simultaneously with high flexibility.
Abstract: To achieve the extreme high data rate and extreme coverage extension requirements of 6G wireless communication, new spectrum in sub-THz (100-300GHz) and non-terrestrial network (NTN) are two of the macro trends of 6G candidate technologies, respectively. However, non-linearity of power amplifiers (PA) is a critical challenge for both sub-THz and NTN. Therefore, high power efficiency (PE) or low peak to average power ratio (PAPR) waveform design becomes one of the most significant 6G research topics. Meanwhile, high spectral efficiency (SE) and low out-of-band emission (OOBE) are still important key performance indicators (KPIs) for 6G waveform design. Single-carrier waveform discrete Fourier transform spreading orthogonal frequency division multiplexing (DFT-s-OFDM) has achieved many research interests due to its high PE, and it has been supported in 5G New Radio (NR) when uplink coverage is limited. So DFT-s-OFDM can be regarded as a candidate waveform for 6G. Many enhancement schemes based on DFT-s-OFDM have been proposed, including null cyclic prefix (NCP)/unique word (UW), frequency-domain spectral shaping (FDSS), and time-domain compression and expansion (TD-CE), etc. However, there is no unified framework to be compatible with all the enhancement schemes. This paper firstly provides a general description of the 6G candidate waveforms based on DFT-s-OFDM enhancement. Secondly, the more flexible TD-CE supporting methods for unified non-orthogonal waveform (uNOW) are proposed and discussed. Thirdly, a unified waveform framework based on DFT-s-OFDM structure is proposed. By designing the pre-processing and post-processing modules before and after DFT in the unified waveform framework, the three technical methods (NCP/UW, FDSS, and TD-CE) can be integrated to improve three KPIs of DFT-s-OFDM simultaneously with high flexibility. Then the implementation complexity of the 6G candidate waveforms are analyzed and compared. Performance of different DFT-s-OFDM enhancement schemes is investigated by link level simulation, which reveals that uNOW can achieve the best PAPR performance among all the 6G candidate waveforms. When considering PA back-off, uNOW can achieve 124% throughput gain compared to traditional DFT-s-OFDM.
23 Feb 2011
TL;DR: Modulation Assignment for Uplink Single Carrier Cooperative DF Relay Kazuhiro KIMURA Masayuki NAKADA Tatsunori OBARA and Fumiyuki ADACHI

Additional excerpts

  • ...第 2 タイムスロットの送受信処理 第 i リレー局はデータ判定・再変調によってシンボ ル系列 }1,,0);(ˆ{ −= cNtts K を生成する. )(ˆ ts は次式で表さ れる. 2 1 0)(ˆ )(ˆ)()(1)(ˆminarg)(ˆ txkWkH N tdts cN k MiMi c Mi tx ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ −= ∑ − =∈χ こ こ で χ は 変 調 シ ン ボ ル の 集 合 を 表 す [6] . }1,,0);(ˆ{ −= cNtts K に GI を挿入し,基地局へ送信する. 基地局受信信号を{yiB(t);t=0,…,Nc−1}で表す.yiB(t)は次 式で表される. ( ) )(mod)(ˆ2)( 1 0 ,, tnNtshPty iB L l ciBliBliBiB +−= ∑ − = τ (11) ここで,hl , iB および τ l , iB は,第 i リレー局・基地局間の 第 l パスの複素パス利得および遅延時間をそれぞれ表 す.niB(t)は平均 0,分散 2N0/Ts の雑音である. 基 地 局 で は , 端 末 か ら の 受 信 信 号 {yMB(t);t=0,…,Nc−1}および第 i リレー局からの受信信 号{yiB(t);t=0,…,Nc−1}に Nc ポイント FFT を適用して, それぞれ周波数領域信号 {YMB(k);k=0,…,Nc−1}および {YiB(k);k=0,…,Nc−1}へ変換する.YMB(k)および YiB(k)は 次式で表される. ⎪ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎧ Π+= ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −= Π+= ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −= ∑ ∑ − = − = )()(ˆ)( 2exp)(1)( )()()( 2exp)(1)( 1 0 1 0 kkSkH N tkjty N kY kkSkH N tkjty N kY iBiB c N t iB c iB MBMB c N t MB c MB c c π π (12) Re‐ move  GI F F T MMSE‐ FDE I F F T De‐ modulation Re‐ modulation Add  GI Data  decision 1st time-slot 2nd time-slot 1st time-slot 2nd time-slot Re‐ move  GI F F T MMSE ‐FDE I F F T De‐ modulation Data  decision same modulation different modulaition MMSE‐ FDE I F F T LLR  combine Data  decision From RS  From BS (10) ここで, )(ˆ kS は第 k 周波数における送信信号成分であ る.HMB(k)および HiB(k)は,それぞれ第 k 周波数にお ける端末・基地局間および第 i リレー局・基地局間の チャネル利得である.ΠMB(k)および Π iB(k)は,それぞ れ第 k 周波数における端末・基地局間および第 i リレ ー局・基地局間の受信信号における AWGN 成分である. )(ˆ kS ,HMB(k),HiB(k),ΠMB(k)および Π iB(k)は次式で与 えられる. ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎧ ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −=Π ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −=Π ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −= ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −= ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −= ∑ ∑ ∑ ∑ ∑ − = − = − = − = − = 1 0 1 0 1 0 , 1 0 , 1 0 2exp)(1)( 2exp)(1)( 2exp2)( 2exp2)( 2exp)(ˆ1)(ˆ c c c N t c iB c iB N t c MB c MB L l c l iBliBiB L l c l MBlMBMB N t cc N tkjtn N k N tkjtn N k N kjhPkH N kjhPkH N tkjts N kS π π τ π τ π π (13) 端末および第 i リレー局からの信号合成法について, 以下で述べる. 3.2.1....

    [...]

  • ...リレー局は端末からの信号を受信し,周波数 領域等化 (FDE)[4]を適用したのち,復調およびデータ 判定を行う....

    [...]

  • ...第 1 タイムスロットの送受信処理 第 i リレー局および基地局における送受信処理のブ ロック図をそれぞれ図 3 および図 4 に示す.本論文で は,シンボル長 Ts で正規化された離散時間 t の等価低 域表現を用いる. R BS RS MT RMB RMi RiB =R/2 BS RS MT Modulation 1 BS RS Modulation 2 1st time-slot 2nd time-slot 図 3 第 i リレー局における信号処理 図 4 基地局における信号処理 端末の送信信号はリレー局および基地局で受信さ れる.第 i リレー局の受信信号{yM i(t);t=0,…,Nc−1}と基 地局の受信信号 {yMB(t);t=0,…,Nc−1}は次式で表される. ( ) ( )⎪⎪ ⎩ ⎪ ⎪ ⎨ ⎧ +−= +−= ∑ ∑ − = − = )( mod)(2)( )( mod)(2)( 1 0 ,, 1 0 ,, tnNtshPty tnNtshPty MB L l cMBlMBlMBMB Mi L l cMilMilMiMi τ τ (4) ここで, {s(t);t=0,…,Nc−1}は端末の送信信号である. hl ,M i および τ l ,Mi は,端末・第 i リレー局間の第 l パス の複素パス利得および遅延時間をそれぞれ表す.hl ,MB および τ l ,MB は,端末・基地局間の第 l パスの複素パス 利 得 お よ び 遅 延 時 間 を そ れ ぞ れ 表 す . {nMi(t);t=0,…,Nc−1} お よ び {nMB(t);t=0,…,Nc−1} は そ れ ぞれ第 1 タイムスロットの第 i リレー局および基地局 における平均 0,分散 2N0/Ts の雑音であり,N0 は加法 性白色ガウス雑音(AWGN)の片側電力スペクトル密 度である. 第 i リレー局の受信信号{yM i(t);t=0,…,Nc−1}に Nc ポ イント高速フーリエ変換 (FFT)を適用し,周波数領域受 信信号{YM i(k);k=0,…,Nc−1}へ変換する.YMi(k)は次式で 表される. )()()( 2exp)(1)( 1 0 kkSkH N tkjty N kY MiMi c N t Mi c Mi c Π+= ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −= ∑ − = π (5) ここで,S(k),HM i(k)および ΠM i(k)は,それぞれ第 k 周 波数における送信信号成分,端末・リレー局間のチャ ネル利得および雑音成分であり,次式で与えられる. ⎪ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎧ ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −=Π ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −= ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −= ∑ ∑ ∑ − = − = − = 1 0 1 0 , 1 0 2exp)(1)( 2exp2)( 2exp)(1)( c c N t c Mi c Mi L l c l MilMiMi N t cc N tkjtn N k N kjhPkH N tkjts N kS π τ π π (6) 周波数領域受信信号 {YM i(k);k=0,…,Nc−1}に最小平均 二乗誤差規範に基づく周波数領域等化 (MMSE-FDE)を 適 用 す る [5] . MMSE-FDE 後 の 周 波 数 領 域 信 号 を }1,,0);(ˆ{ −= cMi NkkY K で表す. )(ˆ kYMi は次式で表される. )()()(ˆ kWkYkY MiMiMi = (7) ここで,{WM i(k);k=0,…,Nc−1}は }1,,0);(ˆ{ −= cMi NkkY K と 送信信号 {S(k);k=0,…,Nc−1}との平均二乗誤差 (MSE)を 最小にする重み (MMSE 重み )であり次式で表される [5]. sMi Mi Mi TNkH kHkW 0 2 * 2)( )()( + = (8) ここで, (.)...

    [...]

  • ...協調 DF リレー シングルキャリア 2 タイムスロット協調 DF リレー の上りリンク伝送の動作を図 2 に示す.第 1 タイムス ロットと第 2 タイムスロットのシンボル長 Ts は等しい ものとする.端末・基地局間,端末・リレー局間およ びリレー局・基地局間のチャネル状態に応じて各リン クの変調方式を決定する.変調方式の決定法は 4.1 節 にて述べる. 図 2 2 タイムスロット協調 DF リレーの動作 第 1 タイムスロットでは,Nc シンボルから成るデー タブロックの後半 Ng 個のシンボルをサイクリックプ レフィックス (CP)としてブロック先頭のガードインタ ーバル (GI)に挿入したのち,リレー局及び基地局へ送 信する.リレー局は端末からの信号を受信し,周波数 領域等化 (FDE)[4]を適用したのち,復調およびデータ 判定を行う. 第 2 タイムスロットでは,リレー局はデータ判定後 に再度変調し,GI を挿入後基地局へ送信する.基地局 はリレー局からの信号と端末からの信号を合成した後, データ復調を行う.このとき,端末およびリレー局か らの受信信号の変調方式が互いに等しい場合と異なる 場合で,それぞれ異なる合成法を用いる.合成法につ いては 3.2.1 節および 3.2.2 節にて述べる.送信信号が リレー局あるいは基地局で受信されるまでに,距離に 依存する伝搬損失や,シャドウイングおよびマルチパ スフェージングにより,受信電力が変動する.端末・ 基地局間,端末・第 i リレー局間および第 i リレー局・ 基地局間の伝搬路を介した信号の受信電力 PMB,PM i および PiB は,それぞれ次式で表せる. ( ) ( ) ( ) ( ) ( ) ( )⎪⎪⎩ ⎪⎪ ⎨ ⎧ ⋅⋅⋅=⋅⋅= ⋅⋅⋅=⋅⋅= ⋅⋅⋅=⋅⋅= −−−−−− −−−−−− −−−−−− 1010 1010 1010 1010 1010 1010 iBRB MiMR MBMB RRRPRPP RRRPRPP RRRPRPP iBiiBiiB MiMMiMMi MBMMBMMB ηαααηα ηαααηα ηαααηα (2) ここで,α は伝搬損失指数を表している.ηMB,ηM i お よび η iB はそれぞれ端末・基地局間,端末・第 i リレー 局間および第 i リレー局・基地局間のシャドウイング 損失 (dB)であり,それぞれ平均値 0 で標準偏差 σ の独 立な正規ランダム変数である.式 (2)は端末・基地局間, 端末・第 i リレー局間および第 i リレー局・基地局間 正規化距離 rMB=RMB/R,rM i=RMi/R および riB=RiB/R を用 いると,次式のように表される ⎪ ⎪ ⎩ ⎪⎪ ⎨ ⎧ ⋅⋅= ⋅⋅= ⋅⋅= −− −− −− 10 10 10 10 10 10 iB Mi MB iBiiB MiMMi MBMMB rPP rPP rPP ηα ηα ηα (3) ここで, α−⋅= RPP MM および α−⋅= RPP ii は,それぞれ端 末および第 i リレー局における正規化送信電力である. 3.1....

    [...]

  • ...変調方式が等しい場合の合成法 端末および第 i リレー局からの受信信号の変調方式 が等しい場合,MMSE 合成 [5]を用いる.式 (12)より FDE 後の受信信号{ )(ˆ kY ;k=0,…,Nc−1}は次式で表される. )()()()()(ˆ kWkYkWkYkY iBiBMBMB += (14) こ こ で {WMB(k);k=0,…,Nc−1} お よ び {WiB(k);k=0,…,Nc−1} は }1,,0);(ˆ{ −= cNkkY K と {S(k);k=0,…,Nc−1}との MSE を最小とする MMSE 重み であり,それぞれ次式で与えられる [5]. ⎪ ⎪ ⎪ ⎩ ⎪⎪ ⎪ ⎨ ⎧ ++ = ++ = siBMB iB iB siBMB MB MB TNkHkH kHkW TNkHkH kHkW 0 22 * 0 22 * 2)()( )()( 2)()( )()( (15) FDE 後の受信信号 }1,,0);(ˆ{ −= cNkkY K に Nc ポイント IFFT を適用して時間領域信号 }1,,0);(ˆ{ −= cNttd K に変 換する.ここで ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ = ∑ − = c N kc N ktjkY N td c π2exp)(ˆ1)(ˆ 1 0 (16) は第 t 番目の軟判定シンボルを表し,これを用いてデ ータ判定を行う 3.2.2....

    [...]

01 Jan 2014
TL;DR: In this paper, a low complexity frequency domain turbo equalization (FDTE) is proposed for the MIMO systems with zero padding (ZP) or cyclic prefix (CP) inserted between the transmitted data blocks and its performance is tested on the real-world UWA communications experiments.
Abstract: This dissertation investigates both of the frequency domain and time domain turbo equalization with multiple-input multiple-output (MIMO) fading channels for radio frequency and underwater acoustic communications. First, a low complexity frequency domain turbo equalization (FDTE) is proposed for the MIMO systems with zero padding (ZP) or cyclic prefix (CP) inserted between the transmitted data blocks and its performance is tested on the real-world UWA communications experiments. Second, as high speed communication system requires efficient bandwidth usage and power consumption, CP or ZP is not transmitted as auxiliary information. An inter-block interference cancelation and CP reconstruction algorithm is developed to re-arrange the channel matrix into a block diagonal one. This improvement makes the FDTE effectively detects the continuous data stream from the high speed UWA communications and its performance has been verified by processing data collected from the UWA communications experiment. Finally, a low complexity soft interference cancelation (SIC) time domain turbo equalizer for MIMO systems with high level modulation is proposed. Compared with the conventional linear or nonlinear turbo equalizers, the proposed SIC turbo equalizer can theoretically reach the bound set up by the ideal match filter and its bit error rate (BER) performance from Monte Carlo simulation achieves a lower error floor as well as a more rapid convergence speed.
Dissertation
01 Jan 2013
TL;DR: Dissertacao apresentada para obtencao do Grau de Mestre em Engenharia Electrotecnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciencias e Tecnologia as mentioned in this paper
Abstract: Dissertacao apresentada para obtencao do Grau de Mestre em Engenharia Electrotecnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciencias e Tecnologia
References
More filters
Book
01 Jan 1986
TL;DR: In this paper, the authors propose a recursive least square adaptive filter (RLF) based on the Kalman filter, which is used as the unifying base for RLS Filters.
Abstract: Background and Overview. 1. Stochastic Processes and Models. 2. Wiener Filters. 3. Linear Prediction. 4. Method of Steepest Descent. 5. Least-Mean-Square Adaptive Filters. 6. Normalized Least-Mean-Square Adaptive Filters. 7. Transform-Domain and Sub-Band Adaptive Filters. 8. Method of Least Squares. 9. Recursive Least-Square Adaptive Filters. 10. Kalman Filters as the Unifying Bases for RLS Filters. 11. Square-Root Adaptive Filters. 12. Order-Recursive Adaptive Filters. 13. Finite-Precision Effects. 14. Tracking of Time-Varying Systems. 15. Adaptive Filters Using Infinite-Duration Impulse Response Structures. 16. Blind Deconvolution. 17. Back-Propagation Learning. Epilogue. Appendix A. Complex Variables. Appendix B. Differentiation with Respect to a Vector. Appendix C. Method of Lagrange Multipliers. Appendix D. Estimation Theory. Appendix E. Eigenanalysis. Appendix F. Rotations and Reflections. Appendix G. Complex Wishart Distribution. Glossary. Abbreviations. Principal Symbols. Bibliography. Index.

16,062 citations


"Frequency domain equalization for s..." refers methods in this paper

  • ...Adaptation can be done with LMS (least mean square), RLS, or least squares minimization (LS) techniques, analogous to adaptation of time domain equalizers [Hay96], [Cla98]....

    [...]

  • ...Overlap-save or overlap-add signal processing techniques could also be used to avoid the extra overhead of the cyclic prefix [Fer85], [Hay96]....

    [...]

Journal ArticleDOI
Jr. L.J. Cimini1
TL;DR: The analysis and simulation of a technique for combating the effects of multipath propagation and cochannel interference on a narrow-band digital mobile channel using the discrete Fourier transform to orthogonally frequency multiplex many narrow subchannels, each signaling at a very low rate, into one high-rate channel is discussed.
Abstract: This paper discusses the analysis and simulation of a technique for combating the effects of multipath propagation and cochannel interference on a narrow-band digital mobile channel. This system uses the discrete Fourier transform to orthogonally frequency multiplex many narrow subchannels, each signaling at a very low rate, into one high-rate channel. When this technique is used with pilot-based correction, the effects of flat Rayleigh fading can be reduced significantly. An improvement in signal-to-interference ratio of 6 dB can be obtained over the bursty Rayleigh channel. In addition, with each subchannel signaling at a low rate, this technique can provide added protection against delay spread. To enhance the behavior of the technique in a heavily frequency-selective environment, interpolated pilots are used. A frequency offset reference scheme is employed for the pilots to improve protection against cochannel interference.

2,627 citations


"Frequency domain equalization for s..." refers background in this paper

  • ...OFDM transmits multiple modulated subcarriers in parallel [ 1 ]....

    [...]

  • ...Several variations of orthogonal frequency-division multiplexing (OFDM) have been proposed as effective anti-multipath techniques, primarily because of the favorable trade-off they offer between performance in severe multipath and signal processing complexity [ 1 ]....

    [...]

Book
Simon Haykin1
01 Mar 1991

2,447 citations

Journal ArticleDOI
TL;DR: In this contribution the transmission of M-PSK and M-QAM modulated orthogonal frequency division multiplexed (OFDM) signals over an additive white Gaussian noise (AWGN) channel is considered and the degradation of the bit error rate is evaluated.
Abstract: In this contribution the transmission of M-PSK and M-QAM modulated orthogonal frequency division multiplexed (OFDM) signals over an additive white Gaussian noise (AWGN) channel is considered. The degradation of the bit error rate (BER), caused by the presence of carrier frequency offset and carrier phase noise is analytically evaluated. It is shown that for a given BER degradation, the values of the frequency offset and the linewidth of the carrier generator that are allowed for OFDM are orders of magnitude smaller than for single carrier systems carrying the same bit rate. >

1,816 citations

Journal ArticleDOI
D. Chu1
TL;DR: This correspondence describes the construction of complex codes of the form exp i \alpha_k whose discrete circular autocorrelations are zero for all nonzero lags.
Abstract: This correspondence describes the construction of complex codes of the form exp i \alpha_k whose discrete circular autocorrelations are zero for all nonzero lags. There is no restriction on code lengths.

1,624 citations