scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Friction and wear study of NR/SBR blends with Si3N4Filler

01 Apr 2018-Vol. 346, Iss: 1, pp 012015
TL;DR: In this paper, the authors investigated the mechanical and frictional properties of natural rubber/styrene butadiene rubber (NR/SBR) blends with and without silicon nitride (Si3N4) filler.
Abstract: The aim of this paper is to investigate mechanical and frictional properties of natural rubber/styrene butadiene rubber (NR/SBR) blends with and without silicon nitride (Si3N4) filler. The rubber is surface modified by silane coupling agent (Si-69) for enhancing hydrophobic property. The Si3N4of percentage 0 1, 3, 5 and 7, is incorporated into NR/SBR rubber compounds with 20% precipitated silica. The specimens with and without fillers are prepared as per standard for tensile and friction testing. Fourier transform infrared (FTIR) spectroscopy test is conducted and it is inferred that the coupling agent is covalently bonded on the surface of Si3N4 particles and an organic coating layer is formed. The co-efficient of friction and specific wear rate of NR/SBR blends are examined using an in-house built friction tester in a disc-on-plate (DOP) configuration. The specimens are tested to find coefficient of friction (COF) against steel grip antiskid plate under dry, mud, wet and oil environmental conditions. It is found that the increase in tensile strength and modulus at low percentage of Si3N4 dispersion. It is also observed that increase in sliding friction co-efficient and decrease in wear rate for 1% of Si3N4 dispersion in NR/SBR blends. The friction tested surfaces are inspected using Scanning Electron Microscope (SEM) and 3D non contact surface profiler.
References
More filters
Journal ArticleDOI
TL;DR: In this article, a silane coupling agent was used for surface modification of native nano-sized silicon nitride (Si3N4) powder, and an organic coating layer was formed.
Abstract: In this work, a silane coupling agent was used for surface modification of native nano-sized silicon nitride (Si3N4) powder. According to the spectra of FT-IR and TGA, it can be inferred that this coupling agent covalently bonds on the surface of nano-Si3N4 particles and an organic coating layer was formed. The surface free energy experiments showed that the hydrophobic property of nano-Si3N4 modified with coupling agent was improved obviously. Analysis of nanoparticle size and TEM revealed that the modified nano-Si3N4 possessed good dispersibility and the average diameter was less than 100 nm.

1 citations