scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Friction Stir Welding of AA6082 Thin Aluminium Alloy Reinforced with Al2O3 Nanoparticles

04 Sep 2019-Transactions of The Indian Ceramic Society (Taylor & Francis)-Vol. 78, Iss: 3, pp 137-145
TL;DR: In this paper, AA6082-T6 thin aluminium alloy plates of 2 mm thickness were friction stir welded using fine ceramic Al2O3 nanoparticles as the reinforcing materials between the adjo...
Abstract: In this present investigation, AA6082-T6 thin aluminium alloy plates of 2 mm thickness were friction stir welded using fine ceramic Al2O3 nanoparticles as the reinforcing materials between the adjo...
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the current status of nanoparticle reinforcement FSW process is analyzed and various properties associated with reinforced joints are presented with the mechanism of the relationship between microstructure and properties.
Abstract: Nanomaterial reinforced friction stir welding (FSW) is an emerging domain, as it delivers a promising method for enhancing joint properties by making composite joints. Composite joints can enhance surface properties like hardness, strength, corrosion resistance, wear resistance, fatigue life, electrical conductance. Over few years many publications have been reported on the application of nanoparticles reinforcement in FSW joints. The present review critically analyses the current status of nanoparticle reinforcement FSW process. Firstly need, type, behaviour, intrinsic properties of nanoparticles used in FSW are discussed. Then, the microstructural examinations of reinforced joints are analysed. Followed by, various properties associated with reinforced joints are presented with the mechanism of the relationship between microstructure and properties. Finally, various methods of deposition of nanoparticle in FSW is discussed. At last prospects of reinforced FSW are explored followed by concluding remarks.

32 citations

Journal ArticleDOI
TL;DR: In this article, the mechanical and microstructural properties of friction stir welded similar DP600 steel were investigated and the sheets were butt welded with a single pass and three different rota...
Abstract: In the present work, mechanical and microstructural properties of friction stir welded similar DP600 steel were investigated. The sheets were butt welded with a single pass and three different rota...

10 citations


Cites methods from "Friction Stir Welding of AA6082 Thi..."

  • ...The planimetric method was used to calculate the average grain size number [42],...

    [...]

Journal ArticleDOI
TL;DR: In this article, the effect of adding novel biochar microparticle into the welding zone of dissimilar friction stir welding of AISI-SAE 1010 (steel) and CDA 101 (copper) alloys was investigated.
Abstract: This present work investigates the effect of adding novel biochar microparticle into the welding zone of dissimilar friction stir welding of AISI-SAE 1010 (steel)–CDA 101 (copper) alloys. The primary aim of this work was to produce efficient weld joints in AISI-SAE 1010–CDA 101 alloys using biochar as solid lubricant via friction stir welding process. The biochar particles were prepared from rice husk biomass via carbonization process. The welding was performed using tapered pin profiled tool with rotational speed of 900 rpm, traverse speed of 30 mm/min, axial load of 5 KN, dwell time of 5s, plunging depth of 0.2mm, and biochar additions of 0.5, 1, 2, and 4wt%. The highest tensile strength of 205 MPa, elongation of 44%, yield strength of 177MPa, strain value of 36, and Vickers hardness of 121 were observed for FSW joints made using 2wt% of biochar content. Large addition of biochar up to 4wt% marginally affects the properties. Similarly, the fatigue strength of 157MPa was observed for weld made using 2wt% of biochar. The microstructure of biochar-assisted weld nugget shows highly refined less thermally affected grains. The grains were in equiaxial with distortion-free. The EDAX report confirms the presence of copper, iron, and carbon on the weld nugget, which indicates fine mixing of parent metals with solid lubricant. These mechanical properties improved environmental friendly dissimilar welding method could be used in industrial applications such as automobile, aerospace, construction, defense, medical, energy where high strength with high durable weld joints are required to meet the current technology demand, and process economy.

9 citations

Journal ArticleDOI
TL;DR: Filling Friction Stir Welding (FFSW) is an FSW completing process, in which the exit-holes at the end of friction stir welded lines are filled by a rotational semi-consumable pin this paper.
Abstract: Filling Friction Stir Welding (FFSW) is an FSW completing process, in which the exit-holes at the end of friction stir welded lines are filled by a rotational semi-consumable pin. In the present st...

9 citations

Journal ArticleDOI
13 Jan 2021
TL;DR: In this article, aluminum hybrid composites using bamboo leaf ash (BLA) and alumina have been fabricated via stir casting and the effect of the EDM machining process parameters on the output responses such as surface roughness (Ra) and material removal rate (MRR) are evaluated using grey relational analysis.
Abstract: In this research work, aluminum hybrid composites using bamboo leaf ash (BLA) and alumina have been fabricated via stir casting. Three hybrid composites viz: A713 + 2%BLA + 2%Al2O3, A713 + 2%BLA + 4%Al2O3, A713 + 4%BLA + 2%Al2O3 are fabricated successfully and EDM machining of these three composites is performed. The EDM machining experiments of the three hybrid composites, have been designed using Taguchi L27 orthogonal array design of experiments (DOE) considering current (A), duty cycle (%), gap voltage (V) and different percentage composition of the reinforcements. The effect of the EDM machining process parameters on the output responses such as surface roughness (Ra) and material removal rate (MRR) are evaluated using grey relational analysis.

6 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the current status of the FSP technology in the field of composite fabrication with the main impetus on aluminum and magnesium alloys is described, and a review article is presented.
Abstract: Composite manufacturing is one of the most imperative advances in the history of materials. Nanoparticles have been attracting increasing attention in the composite community because of their capability of improving the mechanical and physical properties of traditional fiber-reinforced composites. Friction stir processing (FSP) has successfully evolved as an alternative technique of fabricating metal matrix composites. The FSP technology has recently shown a significant presence in generation of ex situ and in situ nanocomposites. This review article essentially describes the current status of the FSP technology in the field of composite fabrication with the main impetus on aluminum and magnesium alloys.

195 citations

Journal ArticleDOI
TL;DR: In this paper, the microstructures, wear property and micro-hardness of AZ91 Mg alloy/alumina particle reinforced nano-composite produced by friction stir processing (FSP) were investigated.
Abstract: The microstructures, wear property and micro-hardness of AZ91 Mg alloy/alumina particle reinforced nano-composite produced by friction stir processing (FSP) were investigated. The initial microstructures of the AZ91 were composed of irregularly distributed β-phases (Al12Mg17), while the FSPed specimens were characterized by the homogeneous distribution of alumina particles, the recrystallized grain structure and the dissolution of β-phase. The results showed an improvement in the hardness, wear property of the FSPed zone as results of more grain refinement and pinning effect of nano-alumina particles as compared to those of the base metal. The hardness of the FSPed zone was a higher and more homogeneously distributed and the wear resistance as evaluated by Dry sliding wear tests, was superior, as compared with the base metal.

156 citations

Journal ArticleDOI
TL;DR: In this paper, tool wear and the rate of wear for hardened, steel, right-hand screws rotating at 1000 rpm in the friction-stir welding of Al 6061+20 vol.%Al2O3 particles were observed to decrease for increasing weld or traverse speeds.
Abstract: Tool wear and the rate of wear for hardened, steel, right-hand screws rotating at 1000 rpm in the friction-stir welding of Al 6061+20 vol.%Al2O3 particles were observed to decrease for increasing weld or traverse speeds. When sufficiently long traverse distances were reached, tool wear became small or negligible, and an optimized tool shape emerged. This shape was slightly different at 6 and 9 mm s−1 weld speeds but in each case a self-optimized tool shape emerged. This self-optimizing wear phenomena and tool shape result by counter motions of solid-state flow regimes which depend upon both tool rotation speed and actual weld traverse speed. Although sound, porosity-free welds are obtained with both the unworn, threaded pin tool and the worn, unthreaded pin tool, microstructures vary and the worn pin tool produced a narrower heat affected zone with less drop in hardness than the threaded pin tool.

150 citations

Journal ArticleDOI
TL;DR: In this article, the effect of nano-sized SiC particle on the mechanical properties of the friction stir welding (FSW) joints was investigated, and a combination of three rotational speeds and three traveling speeds were applied.

146 citations

Journal ArticleDOI
TL;DR: In this paper, sound friction-stir processed layers were fabricated on a commercially pure titanium substrate with or without introduction of nano-sized SiC powder to the stir zone under an argon shrouding system using tool rotation and substrate advancing speeds in the range 800-1250-rpm and 35-55mm/s, respectively.
Abstract: Sound friction-stir processed layers were fabricated on a commercially pure titanium substrate with or without introduction of nano-sized SiC powder to the stir zone under an argon shrouding system using tool rotation and substrate advancing speeds in the range 800–1250 rpm and 35–55 mm/s, respectively. Surface layers exhibited finer grain sizes and greater hardness values compared to those of the as-received substrate. Superior surface enhancements were resulted by uniform dispersion of nano-sized SiC powder in the fabricated surface composite layer after four friction stir process passes. The fabricated Ti/SiC nano-composite surface layer showed a matrix of dynamically restorated ultra fine grains/subgrains with a mean size of ~ 400 nm and a hardness value of ~ 534 HV; this is about 3.3 times greater than that of the as-received substrate.

101 citations