scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Friction stir welding of aluminium alloys

01 Mar 2009-International Materials Reviews (Taylor & Francis)-Vol. 54, Iss: 2, pp 49-93
TL;DR: A comprehensive body of knowledge has built up with respect to the friction stir welding (FSW) of aluminium alloys since the technique was invented in 1991 is reviewed in this article, including thermal history and metal flow, before discussing how process parameters affect the weld microstructure and the likelihood of entraining defects.
Abstract: The comprehensive body of knowledge that has built up with respect to the friction stir welding (FSW) of aluminium alloys since the technique was invented in 1991 is reviewed The basic principles of FSW are described, including thermal history and metal flow, before discussing how process parameters affect the weld microstructure and the likelihood of entraining defects After introducing the characteristic macroscopic features, the microstructural development and related distribution of hardness are reviewed in some detail for the two classes of wrought aluminium alloy (non-heat-treatable and heat-treatable) Finally, the range of mechanical properties that can be achieved is discussed, including consideration of residual stress, fracture, fatigue and corrosion It is demonstrated that FSW of aluminium is becoming an increasingly mature technology with numerous commercial applications In spite of this, much remains to be learned about the process and opportunities for further research a
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review the latest developments in the numerical analysis of friction stir welding processes, microstructures of friction-stir welded joints and the properties of friction spat welded structures.

397 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive understanding of the fundamentals of the microstructural evolution during FSW/P has been developed, including the mechanisms underlying the development of grain structures and textures, phases, phase transformations and precipitation.

390 citations

Journal ArticleDOI
TL;DR: Friction stir welding (FSW) is widely accepted to be one of the most significant welding techniques to emerge in the last 20 years and has been widely used for joining alloys in various industrial applications.
Abstract: The friction stir welding (FSW) technique is widely accepted to be one of the most significant welding techniques to emerge in the last 20 years. Friction stir welding of Al-alloys is now commonplace and is covered in several recent reviews, including one in this journal. Consequently, the technique is currently being used for joining of these alloys in various industrial applications. Complementary to these developments has been a dramatic increase in research into joining of other alloys and systems by FSW. This field is very active, but less mature. Thus, the aim of this review article is to build on our understanding of the fundamentals, as applied to Al-alloys that laid out in the previous review in this journal, and to address the current state-of-the-art of FSW developing beyond Al-alloys, including Mg-alloys, Cu-alloys, steels, Ti-alloys and metal matrix composites, focusing particularly on microstructural aspects, including texture formation, and the resulting properties of these joints. ...

385 citations

Journal ArticleDOI
TL;DR: Friction stir welding (FSW) has achieved remarkable success in the joining and processing of aluminium alloys and other softer structural alloys, however, it has not been entirely successful in the manufacturing of different desired materials essential to meet the sophisticated green globe requirements as discussed by the authors.

347 citations

Journal ArticleDOI
TL;DR: In this paper, the microstructures and mechanical properties of friction stir welded Al-alloys existing in the open literature are discussed in detail in order to highlight the correlations between weld parameters used during FSW and the micro-structures evolved in the weld region and thus mechanical properties.
Abstract: The diversity and never-ending desire for a better life standard result in a continuous development of the existing manufacturing technologies. In line with these developments in the existing production technologies the demand for more complex products increases, which also stimulates new approaches in production routes of such products, e.g., novel welding procedures. For instance, the friction stir welding (FSW) technology, developed for joining difficult-to-weld Al-alloys, has been implemented by industry in manufacturing of several products. There are also numerous attempts to apply this method to other materials beyond Al-alloys. However, the process has not yet been implemented by industry for joining these materials with the exception of some limited applications. The microstructures and mechanical properties of friction stir welded Al-alloys existing in the open literature will be discussed in detail in this review. The correlations between weld parameters used during FSW and the microstructures evolved in the weld region and thus mechanical properties of the joints produced will be highlighted. However, the modeling studies, material flow, texture formation and developments in tool design are out of the scope of this work as well as the other variants of this technology, such as friction stir spot welding (FSSW).

325 citations

References
More filters
Book
07 Nov 1996
TL;DR: In this paper, the authors discuss the extent to which we are able to formulate quantitative, physically-based models which can be applied to metal-forming processes, and the subjects treated in this book are all active research areas and form a major part of at least four regular international conference series.
Abstract: Paperback. The annealing of deformed materials is of both technological importance and scientific interest. The phenomena have been most widely studied in metals, although they occur in all crystalline materials such as the natural deformation of rocks and the processing of technical ceramics. Research is mainly driven by the requirements of industry, and where appropriate, the book discusses the extent to which we are able to formulate quantitative, physically-based models which can be applied to metal-forming processes.The subjects treated in this book are all active research areas, and form a major part of at least four regular international conference series. However, there have only been two monographs published in recent times on the subject of recrystallization, the latest nearly 20 years ago. Since that time, considerable advances have been made, both in our understanding of the subject and in the techniques available to the researcher.The

7,149 citations

Book
30 Mar 2007
TL;DR: Friction stir welding (FSW) is a relatively new solid-state joining process that is used to join high-strength aerospace aluminum alloys and other metallic alloys that are hard to weld by conventional fusion welding as discussed by the authors.
Abstract: Friction stir welding (FSW) is a relatively new solid-state joining process. This joining technique is energy efficient, environment friendly, and versatile. In particular, it can be used to join high-strength aerospace aluminum alloys and other metallic alloys that are hard to weld by conventional fusion welding. FSW is considered to be the most significant development in metal joining in a decade. Recently, friction stir processing (FSP) was developed for microstructural modification of metallic materials. In this review article, the current state of understanding and development of the FSW and FSP are addressed. Particular emphasis has been given to: (a) mechanisms responsible for the formation of welds and microstructural refinement, and (b) effects of FSW/FSP parameters on resultant microstructure and final mechanical properties. While the bulk of the information is related to aluminum alloys, important results are now available for other metals and alloys. At this stage, the technology diffusion has significantly outpaced the fundamental understanding of microstructural evolution and microstructure–property relationships.

4,750 citations

Journal ArticleDOI
TL;DR: In this article, the authors deal with the fundamental understanding of the process and its metallurgical consequences, focusing on heat generation, heat transfer and plastic flow during welding, elements of tool design, understanding defect formation and the structure and properties of the welded materials.

1,811 citations

Journal ArticleDOI
TL;DR: A wide overview of the state-of-the-art of recrystallization mechanisms in polycrystalline materials in various fields (geosciences, glaciology, metallurgy) can be found in this article.

1,345 citations

Journal ArticleDOI
TL;DR: In this paper, the grain structure, dislocation density and second phase particles in various regions including the dynamically recrystallized zone (DXZ), thermo-mechanically affected zone (TMAZ), and heat-affected zone (HAZ) of a friction stir weld aluminum alloy 7050-T651 were investigated and compared with the unaffected base metal.

934 citations