scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Frictional Afterslip Following the 2005 Nias-Simeulue Earthquake, Sumatra

30 Jun 2006-Science (American Association for the Advancement of Science)-Vol. 312, Iss: 5782, pp 1921-1926
TL;DR: It is observed that the cumulative number of aftershocks increases linearly with postseismic displacements; this finding suggests that the temporal evolution ofAftershocks is governed by afterslip.
Abstract: Continuously recording Global Positioning System stations near the 28 March 2005 rupture of the Sunda megathrust [moment magnitude (M_w) 8.7] show that the earthquake triggered aseismic frictional afterslip on the subduction megathrust, with a major fraction of this slip in the up-dip direction from the main rupture. Eleven months after the main shock, afterslip continues at rates several times the average interseismic rate, resulting in deformation equivalent to at least a M_w 8.2 earthquake. In general, along-strike variations in frictional behavior appear to persist over multiple earthquake cycles. Aftershocks cluster along the boundary between the region of coseismic slip and the up-dip creeping zone. We observe that the cumulative number of aftershocks increases linearly with postseismic displacements; this finding suggests that the temporal evolution of aftershocks is governed by afterslip.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
21 Jul 2011-Nature
TL;DR: The Tohoku-Oki earthquake reminds us of the potential for Mw ≈ 9 earthquakes to occur along other trench systems, even if no past evidence of such events exists, and it is imperative that strain accumulation be monitored using a space geodetic technique to assess earthquake potential.
Abstract: Detailed analysis of Global Positioning System data from Japan's Geospatial Information Authority network provides a record of coseismic and postseismic slip distribution on the megathrust fault where the magnitude-9.0 Tohoku-Oki earthquake occurred on 11 March 2011. The coseismic slip area stretches some 400 kilometres along the Japan trench, matching the area of the preseismic locked zone. Afterslip is now overlapping the coseismic slip area and expanding into the surrounding regions. The authors conclude that such geodetic data could help to improve the forecasting of earthquake potential along other subduction zones. In the accompanying News & Views, Jean-Philippe Avouac discusses current models for assessing seismic hazard. Most large earthquakes occur along an oceanic trench, where an oceanic plate subducts beneath a continental plate. Massive earthquakes with a moment magnitude, Mw, of nine have been known to occur in only a few areas, including Chile, Alaska, Kamchatka and Sumatra. No historical records exist of a Mw = 9 earthquake along the Japan trench, where the Pacific plate subducts beneath the Okhotsk plate, with the possible exception of the ad 869 Jogan earthquake1, the magnitude of which has not been well constrained. However, the strain accumulation rate estimated there from recent geodetic observations is much higher than the average strain rate released in previous interplate earthquakes2,3,4,5,6. This finding raises the question of how such areas release the accumulated strain. A megathrust earthquake with Mw = 9.0 (hereafter referred to as the Tohoku-Oki earthquake) occurred on 11 March 2011, rupturing the plate boundary off the Pacific coast of northeastern Japan. Here we report the distributions of the coseismic slip and postseismic slip as determined from ground displacement detected using a network based on the Global Positioning System. The coseismic slip area extends approximately 400 km along the Japan trench, matching the area of the pre-seismic locked zone4. The afterslip has begun to overlap the coseismic slip area and extends into the surrounding region. In particular, the afterslip area reached a depth of approximately 100 km, with Mw = 8.3, on 25 March 2011. Because the Tohoku-Oki earthquake released the strain accumulated for several hundred years, the paradox of the strain budget imbalance may be partly resolved. This earthquake reminds us of the potential for Mw ≈ 9 earthquakes to occur along other trench systems, even if no past evidence of such events exists. Therefore, it is imperative that strain accumulation be monitored using a space geodetic technique to assess earthquake potential.

694 citations

Journal ArticleDOI
17 Jun 2011-Science
TL;DR: Detailed geophysical measurements reveal features of the 2011 Tohoku-Oki megathrust earthquake and suggest the need to consider the potential for a future large earthquake just south of this event.
Abstract: Geophysical observations from the 2011 moment magnitude (M_w) 9.0 Tohoku-Oki, Japan earthquake allow exploration of a rare large event along a subduction megathrust. Models for this event indicate that the distribution of coseismic fault slip exceeded 50 meters in places. Sources of high-frequency seismic waves delineate the edges of the deepest portions of coseismic slip and do not simply correlate with the locations of peak slip. Relative to the M_w 8.8 2010 Maule, Chile earthquake, the Tohoku-Oki earthquake was deficient in high-frequency seismic radiation-a difference that we attribute to its relatively shallow depth. Estimates of total fault slip and surface secular strain accumulation on millennial time scales suggest the need to consider the potential for a future large earthquake just south of this event.

691 citations

Journal ArticleDOI
TL;DR: In this article, a review of slow-slip phenomena suggests that instead there is a continuum between the two types of event, i.e., slow slip, a mechanism by which faults can relieve stress, was thought to be distinct from earthquakes.
Abstract: Slow slip, a mechanism by which faults can relieve stress, was thought to be distinct from earthquakes. However, a global review of slow-slip phenomena suggests that instead there is a continuum between the two types of event.

681 citations


Cites background from "Frictional Afterslip Following the ..."

  • ...A linear relationship between postseismic geodetic deformation, modelled as slow slip on the mainshock fault, and the cumulative number of aftershocks has led to suggestions that aftershocks may be driven primarily by aftersli...

    [...]

Journal ArticleDOI
TL;DR: A review of slow slip events and related seismic tremor observed at plate boundaries worldwide, with a focus on circum-Pacific subduction zones is presented in this article, where the authors show that slow slip is a common phenomena observed at almost all subduction regions with instrumentation capable of recording it, different frictional properties likely control fast versus slow slip, and the depth range may be related to the thermal properties of the plate interface.
Abstract: [1] It has been known for a long time that slip accompanying earthquakes accounts for only a fraction of plate tectonic displacements. However, only recently has a fuller spectrum of strain release processes, including normal, slow, and silent earthquakes (or slow slip events) and continuous and episodic slip, been observed and generated by numerical simulations of the earthquake cycle. Despite a profusion of observations and modeling studies the physical mechanism of slow slip events remains elusive. The concurrence of seismic tremor with slow slip episodes in Cascadia and southwestern Japan provides insight into the process of slow slip. A perceived similarity between subduction zone and volcanic tremor has led to suggestions that slow slip involves fluid migration on or near the plate interface. Alternatively, evidence is accumulating to support the notion that tremor results from shear failure during slow slip. Global observations of the location, spatial extent, magnitude, duration, slip rate, and periodicity of these aseismic slip transients indicate significant variation that may be exploited to better understand their generation. Most slow slip events occur just downdip of the seismogenic zone, consistent with rate- and state-dependent frictional modeling that requires unstable to stable transitional properties for slow slip generation. At a few convergent margins the occurrence of slow slip events within the seismogenic zone makes it highly likely that transitions in frictional properties exist there and are the loci of slow slip nucleation. Slow slip events perturb the surrounding stress field and may either increase or relieve stress on a fault, bringing it closer to or farther from earthquake failure, respectively. This paper presents a review of slow slip events and related seismic tremor observed at plate boundaries worldwide, with a focus on circum-Pacific subduction zones. Trends in global observations of slow slip events suggest that (1) slow slip is a common phenomena observed at almost all subduction zones with instrumentation capable of recording it, (2) different frictional properties likely control fast versus slow slip, (3) the depth range of slow slip may be related to the thermal properties of the plate interface, and (4) the equivalent seismic moment of slow slip events is proportional to their duration (Moατ), different from the Moατ3 scaling observed for earthquakes.

587 citations

Journal ArticleDOI
TL;DR: In this paper, the authors determine coseismic and first-month postseismic deformation associated with the Sumatra-Andaman earthquake of 26 December 2004 from near field Global Positioning System (GPS) surveys in northwestern Sumatra and along the Nicobar and Andaman islands, continuous and campaign GPS measurements from Thailand and Malaysia, and in situ and remotely sensed observations of the vertical motion of coral reefs.
Abstract: We determine coseismic and the first-month postseismic deformation associated with the Sumatra-Andaman earthquake of 26 December 2004 from near- field Global Positioning System (GPS) surveys in northwestern Sumatra and along the Nicobar-Andaman islands, continuous and campaign GPS measurements from Thailand and Malaysia, and in situ and remotely sensed observations of the vertical motion of coral reefs. The coseismic model shows that the Sunda subduction mega- thrust ruptured over a distance of about 1500 km and a width of less than 150 km, releasing a total moment of 6.7-7.0 � 10 22 N m, equivalent to a magnitude M w 9.15. The latitudinal distribution of released moment in our model has three distinct peaks at about 4 N, 7 N, and 9 N, which compares well to the latitudinal variations seen in the seismic inversion and of the analysis of radiated T waves. Our coseismic model is also consistent with interpretation of normal modes and with the amplitude of very-long-period surface waves. The tsunami predicted from this model fits rela- tively well the altimetric measurements made by the JASON and TOPEX satellites. Neither slow nor delayed slip is needed to explain the normal modes and the tsunami wave. The near-field geodetic data that encompass both coseismic deformation and up to 40 days of postseismic deformation require that slip must have continued on the plate interface after the 500-sec-long seismic rupture. The postseismic geodetic moment of about 2.4 � 10 22 Nm( Mw 8.8) is equal to about 30 � 5% of the coseismic moment release. Evolution of postseismic deformation is consistent with rate-strengthening frictional afterslip. Online material: Summary of geodetic data used in this study.

494 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, it is shown that the strength of the population of points of contacts between sliding surfaces determines frictional strength and that the number of contacts changes continuously with displacements.
Abstract: Direct shear experiments on ground surfaces of a granodiorite from Raymond, California, at normal stresses of ∼6 MPa demonstrate that competing time, displacement, and velocity effects control rock friction. It is proposed that the strength of the population of points of contacts between sliding surfaces determines frictional strength and that the population of contacts changes continuously with displacements. Previous experiments demonstrate that the strength of the contacts increases with the age of the contacts. The present experiments establish that a characteristic displacement, proportional to surface roughness, is required to change the population of contacts. Hence during slip the average age of the points of contact and therefore frictional strength decrease as slip velocity increases. Displacement weakening and consequently the potential for unstable slip occur whenever displacement reduces the average age of the contacts. In addition to this velocity dependency, which arises from displacement dependency and time dependency, the experiments also show a competing but transient increase in friction whenever slip velocity increases. Creep of the sliding surface at stresses below that for steady state slip is also observed. Constitutive relationships are developed that permit quantitative simulation of the friction versus displacement data as a function of surface roughness and for different time and velocity histories. Unstable slip in experiments is controlled by these constitutive effects and by the stiffness of the experimental system. It is argued that analogous properties control earthquake instability.

2,478 citations

Journal ArticleDOI
01 Jan 1998-Nature
TL;DR: The traditional view of tectonics is that the lithosphere comprises a strong brittle layer overlying a weak ductile layer, which gives rise to two forms of deformation: brittle fracture, accompanied by earth-quakes, in the upper layer, and aseismic ductile flow in the layer beneath as mentioned in this paper.
Abstract: The traditional view of tectonics is that the lithosphere comprises a strong brittle layer overlying a weak ductile layer, which gives rise to two forms of deformation: brittle fracture, accompanied by earth- quakes, in the upper layer, and aseismic ductile flow in the layer beneath Although this view is not incorrect, it is imprecise, and in ways that can lead to serious misunderstandings The term ductility, for example, can apply equally to two common rock deformation mechanisms: crystal plasticity, which occurs in rock above a critical temperature, and cataclastic flow, a type of granular deformation which can occur in poorly consolidated sediments Although both exhibit ductility, these two deformation mechanisms have very different rheologies Earthquakes, in turn, are associated with strength and brittleness—associations that are likewise sufficiently imprecise that, if taken much beyond the generality implied in the opening sentence, they can lead to serious misinterpretations about earthquake mechanics Lately, a newer, much more precise and predictive model for the earthquake mechanism has emerged, which has its roots in the observation that tectonic earthquakes seldom if ever occur by the sudden appearance and propagation of a new shear crack (or 'fault') Instead, they occur by sudden slippage along a pre-existing fault or plate interface They are therefore a frictional, rather than fracture, phenomenon, with brittle fracture playing a secondary role in the lengthening of faults 1 and frictional wear 2 This distinction was noted by several early workers 3 , but it was not until 1966 that Brace and Byerlee 4 pointed out that earthquakes must be the result of a stick-slip frictional instability Thus, the earthquake is the 'slip', and the 'stick' is the interseismic period of elastic strain accumula- tion Subsequently, a complete constitutive law for rock friction has been developed based on laboratory studies A surprising result is that a great many other aspects of earthquake phenomena also now seem to result from the nature of the friction on faults The properties traditionally thought to control these processes— strength, brittleness and ductility—are subsumed within the over- arching concept of frictional stability regimes Constitutive law of rock friction In the standard model of stick-slip friction it is assumed that sliding begins when the ratio of shear to normal stress on the surface reaches a value ms, the static friction coefficient Once sliding initiates, frictional resistance falls to a lower dynamic friction coefficient, md, and this weakening of sliding resistance may,

1,813 citations

Journal ArticleDOI
TL;DR: In this paper, a model for oblique convergence between plates of lithosphere is proposed in which at least a fraction of slip parallel to the plate margin results in transcurrent movements on a nearly vertical fault which is located on the continental side of a zone of plate consumption.
Abstract: A model for oblique convergence between plates of lithosphere is proposed in which at least a fraction of slip parallel to the plate margin results in transcurrent movements on a nearly vertical fault which is located on the continental side of a zone of plate consumption. In an extreme case of complete decoupling only the component of slip normal to the plate margin can be inferred from underthrusting. Recent movements in the western Sunda region provide the most convincing evidence for decoupling of slip, which in this region is thought to be oblique to the plate margin. A speculative model for convergence along the margins of the Philippine Sea is constructed from an inferred direction of oblique slip in the Philippine region. This model requires that the triple point formed by the junction of the Japanese and Izu-Bonin trenches and the Nankai trough migrate along the Sagami trough.

1,365 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a state-variable constitutive formulation for the rate of earthquake production resulting from an applied stressing history, which was implemented using solutions for nucleation of unstable fault slip on faults with experimentally derived rate and state dependent fault properties.
Abstract: Seismicity is modeled as a sequence of earthquake nucleation events in which the distribution of initial conditions over the population of nucleation sources and stress- ing history control the timing of earthquakes. The model is implemented using solutions for nucleation of unstable fault slip on faults with experimentally derived rate- and state- dependent fault properties. This yields a general state-variable constitutive formulation for rate of earthquake production resulting from an applied stressing history. To illustrate and test the model some characteristics of seismicity following a stress step have been explored. It is proposed that various features of earthquake clustering arise from sensi- tivity of nucleation times to the stress changes induced by prior earthquakes. The model gives the characteristic Omori aftershock decay law and interprets aftershock parameters in terms of stress change and stressing rate. Earthquake data appear to support a model prediction that aftershock duration, defined as the time for rates to return to the back- ground seismicity rate, is proportional to mainshock recurrence time. Observed spatial and temporal clustering of earthquake pairs arises as a consequence of the spatial depen- dence of stress changes of the first event of the pair and stress-sensitive time-dependent nucleation. Applications of the constitutive formulation are not restricted to the simple stress step models investigated here. It may be applied to stressing histories of arbitrary complexity. The apparent success at modeling clustering phenomena suggests the possibil- ity of using the formulation to estimate short- to intermediate-term earthquake probabil- ities following occurrence of other earthquakes and for inversion of temporal variations of earthquake rates for changes in driving stress.

1,338 citations

Journal ArticleDOI
20 May 2005-Science
TL;DR: Tsunami and geodetic observations indicate that additional slow slip occurred in the north over a time scale of 50 minutes or longer, and fault slip of up to 15 meters occurred near Banda Aceh, Sumatra, but to the north, along the Nicobar and Andaman Islands, rapid slip was much smaller.
Abstract: The two largest earthquakes of the past 40 years ruptured a 1600-kilometer-long portion of the fault boundary between the Indo-Australian and southeastern Eurasian plates on 26 December 2004 [seismic moment magnitude (Mw) = 9.1 to 9.3] and 28 March 2005 (Mw = 8.6). The first event generated a tsunami that caused more than 283,000 deaths. Fault slip of up to 15 meters occurred near Banda Aceh, Sumatra, but to the north, along the Nicobar and Andaman Islands, rapid slip was much smaller. Tsunami and geodetic observations indicate that additional slow slip occurred in the north over a time scale of 50 minutes or longer.

1,030 citations