scispace - formally typeset
Search or ask a question
Journal ArticleDOI

From Femtoseconds to Hours—Measuring Dynamics over 18 Orders of Magnitude with Coherent X-rays

02 Jul 2021-Applied Sciences (Multidisciplinary Digital Publishing Institute)-Vol. 11, Iss: 13, pp 6179
TL;DR: X-ray photon correlation spectroscopy (XPCS) as mentioned in this paper enables the study of sample dynamics between micrometer and atomic length scales, and it benefits from the increased brilliance of the next-generation synchrotron radiation and Free-Electron Laser (FEL) sources.
Abstract: X-ray photon correlation spectroscopy (XPCS) enables the study of sample dynamics between micrometer and atomic length scales. As a coherent scattering technique, it benefits from the increased brilliance of the next-generation synchrotron radiation and Free-Electron Laser (FEL) sources. In this article, we will introduce the XPCS concepts and review the latest developments of XPCS with special attention on the extension of accessible time scales to sub-μs and the application of XPCS at FELs. Furthermore, we will discuss future opportunities of XPCS and the related technique X-ray speckle visibility spectroscopy (XSVS) at new X-ray sources. Due to its particular signal-to-noise ratio, the time scales accessible by XPCS scale with the square of the coherent flux, allowing to dramatically extend its applications. This will soon enable studies over more than 18 orders of magnitude in time by XPCS and XSVS.
Citations
More filters
Journal Article
TL;DR: The observed reduction of the speckle contrast generated by x-rays with pulse duration longer than 30 fs indicates ultrafast dynamics taking place at an atomic length scale prior to the permanent sample damage.
Abstract: The single shot based coherence properties of hard x-ray pulses from the Linac Coherent Light Source (LCLS) were measured by analyzing coherent diffraction patterns from nano-particles and gold nanopowder. The intensity histogram of the small angle x-ray scattering ring from nano-particles reveals the fully transversely coherent nature of the LCLS beam with a number of transverse mode 〈Ms〉 = 1.1. On the other hand, the speckle contrasts measured at a large wavevector yields information about the longitudinal coherence of the LCLS radiation after a silicon (111) monochromator. The quantitative agreement between our data and the simulation confirms a mean coherence time of 2.2 fs and a x-ray pulse duration of 29 fs. Finally the observed reduction of the speckle contrast generated by x-rays with pulse duration longer than 30 fs indicates ultrafast dynamics taking place at an atomic length scale prior to the permanent sample damage.

34 citations

Journal ArticleDOI
TL;DR: In this paper, the results of a computational X-ray cross correlation analysis (XCCA) study on two-dimensional polygonal model structures are presented, where the authors show how to detect and identify the orientational order of such systems, demonstrate how to eliminate the influence of the "computational box" on the XCCA results and develop new correlation functions that reflect the sample's orientation only.
Abstract: We present the results of a computational X-ray cross correlation analysis (XCCA) study on two dimensional polygonal model structures. We show how to detect and identify the orientational order of such systems, demonstrate how to eliminate the influence of the "computational box" on the XCCA results and develop new correlation functions that reflect the sample's orientational order only. For this purpose, we study the dependence of the correlation functions on the number of polygonal clusters and wave vector transfer $q$ for various types of polygons including mixtures of polygons and randomly placed particles. We define an order parameter that describes the orientational order within the sample. Finally, we determine the influence of detector noise and non-planar wavefronts on the XCCA data which both appear to affect the results significantly and have thus to be considered in real experiments.

27 citations

Journal ArticleDOI
TL;DR: In this article , the ID02 beamline with the Extremely Brilliant Source (EBS) at the ESRF is described, which enables static and kinetic investigations of a broad range of systems from ångström to micrometre size scales by combining different small-angle X-ray scattering techniques in a single instrument.
Abstract: The new technical features and enhanced performance of the ID02 beamline with the Extremely Brilliant Source (EBS) at the ESRF are described. The beamline enables static and kinetic investigations of a broad range of systems from ångström to micrometre size scales and down to the sub-millisecond time range by combining different small-angle X-ray scattering techniques in a single instrument. In addition, a nearly coherent beam obtained in the high-resolution mode allows multispeckle X-ray photon correlation spectroscopy measurements down to the microsecond range over the ultra-small- and small-angle regions. While the scattering vector (of magnitude q) range covered is the same as before, 0.001 ≤ q ≤ 50 nm-1 for an X-ray wavelength of 1 Å, the EBS permits relaxation of the collimation conditions, thereby obtaining a higher flux throughput and lower background. In particular, a coherent photon flux in excess of 1012 photons s-1 can be routinely obtained, allowing dynamic studies of relatively dilute samples. The enhanced beam properties are complemented by advanced pixel-array detectors and high-throughput data reduction pipelines. All these developments together open new opportunities for structural, dynamic and kinetic investigations of out-of-equilibrium soft matter and biophysical systems.

23 citations

Journal ArticleDOI
TL;DR: In this paper, the Siegert relation relates the electric field and intensity correlations of light, under given assumptions, and a derivation of the relation is given, after a brief history of intensity correlations.
Abstract: The Siegert relation relates the electric field and intensity correlations of light, under given assumptions. After a brief history of intensity correlations, we give a derivation of the relation. Then we present an experiment, which can be easily adapted for an undergraduate setup, and that allows measuring both field and intensity correlations at the same time, thus providing a direct test of the Siegert relation. As a conclusion, we discuss typical situations where the relation fails.

16 citations

Journal ArticleDOI
01 Sep 2021-IUCrJ
TL;DR: In this article, the authors used X-ray photon correlation spectroscopy to study soft-matter systems with charge-stabilized silica nanoparticles dispersed in water, with radii between 12 and 15 nm and volume fractions between 0.005 and 0.2.

12 citations

References
More filters
Journal ArticleDOI
08 Mar 2001-Nature
TL;DR: Current theoretical knowledge of the manner in which intermolecular forces give rise to complex behaviour in supercooled liquids and glasses is discussed.
Abstract: Glasses are disordered materials that lack the periodicity of crystals but behave mechanically like solids. The most common way of making a glass is by cooling a viscous liquid fast enough to avoid crystallization. Although this route to the vitreous state-supercooling-has been known for millennia, the molecular processes by which liquids acquire amorphous rigidity upon cooling are not fully understood. Here we discuss current theoretical knowledge of the manner in which intermolecular forces give rise to complex behaviour in supercooled liquids and glasses. An intriguing aspect of this behaviour is the apparent connection between dynamics and thermodynamics. The multidimensional potential energy surface as a function of particle coordinates (the energy landscape) offers a convenient viewpoint for the analysis and interpretation of supercooling and glass-formation phenomena. That much of this analysis is at present largely qualitative reflects the fact that precise computations of how viscous liquids sample their landscape have become possible only recently.

3,736 citations

Journal ArticleDOI
TL;DR: A potential model intended to be a general purpose model for the condensed phases of water is presented, which gives excellent predictions for the densities at 1 bar with a maximum density at 278 K and an averaged difference with experiment of 7 x 10(-4) g/cm3.
Abstract: A potential model intended to be a general purpose model for the condensed phases of water is presented. TIP4P/2005 is a rigid four site model which consists of three fixed point charges and one Lennard-Jones center. The parametrization has been based on a fit of the temperature of maximum density (indirectly estimated from the melting point of hexagonal ice), the stability of several ice polymorphs and other commonly used target quantities. The calculated properties include a variety of thermodynamic properties of the liquid and solid phases, the phase diagram involving condensed phases, properties at melting and vaporization, dielectric constant, pair distribution function, and self-diffusion coefficient. These properties cover a temperature range from 123to573K and pressures up to 40000bar. The model gives an impressive performance for this variety of properties and thermodynamic conditions. For example, it gives excellent predictions for the densities at 1bar with a maximum density at 278K and an aver...

3,009 citations

Journal ArticleDOI
TL;DR: The Linac Coherent Light Source free-electron laser has achieved coherent X-ray generation down to a wavelength of 1.2 A and at a brightness that is nearly ten orders of magnitude higher than conventional synchrotrons.
Abstract: The Linac Coherent Light Source free-electron laser has now achieved coherent X-ray generation down to a wavelength of 1.2 A and at a brightness that is nearly ten orders of magnitude higher than conventional synchrotrons. Researchers detail the first operation and beam characteristics of the system, which give hope for imaging at atomic spatial and temporal scales.

2,648 citations

Journal ArticleDOI
TL;DR: In this paper, the SPring-8 Angstrom Compact Free-Electron Laser (CFEL) was used for sub-angstrom fundamental-wavelength lasing at the Tokyo National Museum.
Abstract: Researchers report sub-angstrom fundamental-wavelength lasing at the SPring-8 Angstrom Compact Free-Electron Laser in Japan. The output has a maximum power of more than 10 GW, a pulse duration of 10−14 s and a lasing wavelength of 0.634 A.

1,467 citations

Journal ArticleDOI
X. Llopart1, Rafael Ballabriga1, Michael Campbell1, Lukas Tlustos1, W. Wong1 
TL;DR: In this paper, the authors proposed a novel approach for the readout of a TPC at the future linear collider is to use a CMOS pixel detector combined with some kind of gas gain grid.
Abstract: A novel approach for the readout of a TPC at the future linear collider is to use a CMOS pixel detector combined with some kind of gas gain grid. A first test using the photon counting chip Medipix2 with GEM or Micromegas demonstrated the feasibility of such an approach. Although this experiment demonstrated that single primary electrons could be detected the chip did not provide information on the arrival time of the electron in the sensitive gas volume nor did it give any indication of the quantity of charge detected. The Timepix chip uses an external clock with a frequency of up to 100 MHz as a time reference. Each pixel contains a preamplifier, a discriminator with hysteresis and 4-bit DAC for threshold adjustment, synchronization logic and a 14-bit counter with overflow control. Moreover, each pixel can be independently configured in one of four different modes: masked mode: pixel is off, counting mode: 1-count for each signal over threshold, TOT mode: the counter is incremented continuously as long as the signal is above threshold, and arrival time mode: the counter is incremented continuously from the time the first hit arrives until the end of the shutter. The chip resembles very much the Medipix2 chip physically and can be readout using slightly modified versions of the various existing systems. This paper presents the main features of the new design, electrical measurements and some first images.

1,004 citations