scispace - formally typeset
Search or ask a question
Journal ArticleDOI

From gene to biomolecular networks: a review of evidences for understanding complex biological function in plants.

TL;DR: In this article, a review describes recent applications of network-based approaches to understand the biological functions in plants and focuses on the challenges and opportunities to harness the full potential of the approach.
About: This article is published in Current Opinion in Biotechnology.The article was published on 2022-04-01 and is currently open access. It has received 8 citations till now. The article focuses on the topics: DECIPHER & Biological network.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , a review of the current understanding of availability and utilization of natural genetic variations for grain micronutrients among cultivated and wild relatives, QTLs/genes and different genomic regions regulating the accumulation of micRONutrients, and the status of mic-nutrient bio-fortified wheat varieties released for commercial cultivation across the globe.
Abstract: Alleviating micronutrients associated problems in children below five years and women of childbearing age, remains a significant challenge, especially in resource-poor nations. One of the most important staple food crops, wheat attracts the highest global research priority for micronutrient (Fe, Zn, Se, and Ca) biofortification. Wild relatives and cultivated species of wheat possess significant natural genetic variability for these micronutrients, which has successfully been utilized for breeding micronutrient dense wheat varieties. This has enabled the release of 40 biofortified wheat cultivars for commercial cultivation in different countries, including India, Bangladesh, Pakistan, Bolivia, Mexico and Nepal. In this review, we have systematically analyzed the current understanding of availability and utilization of natural genetic variations for grain micronutrients among cultivated and wild relatives, QTLs/genes and different genomic regions regulating the accumulation of micronutrients, and the status of micronutrient biofortified wheat varieties released for commercial cultivation across the globe. In addition, we have also discussed the potential implications of emerging technologies such as genome editing to improve the micronutrient content and their bioavailability in wheat.

7 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper made two modules based on how genes work together by using WGCNA analysis, and the light green GSE131761 module and the blue GSE137342 module had the strongest links to sepsis.
Journal ArticleDOI
TL;DR: In this article , the authors provide comprehensive summaries of the mechanisms of plant biomolecules in the environment revealed by MD simulation and validate it as an applicable tool for bridging gaps between macroscopic and microscopic behavior.
Journal ArticleDOI
TL;DR: The results show that intermediate leakage can readily occur and contribute to organismal adaptation and anticipate applications of mutation-induced leakage in metabolic engineering.
Abstract: Many metabolic pathways are of ancient origin and have evolved over long periods of time (Noda-Garcia et al., 2018). Yet, new pathways can also emerge in short time scales in response, for instance, to the presence of anthropogenic chemicals in the environment (Copley, 2009). Models of metabolic pathway emergence and evolution often emphasize the acquisition of new reactions through horizontal gene transfer and promiscuous enzyme functionalities (Pál et al., 2005; Schulenburg & Miller, 2014; Copley, 2015; Noda-Garcia et al., 2018; Peracchi, 2018). A fundamentally different mechanism of metabolic innovation is revealed by the evolutionary repair experiments reported here. A block in the proline biosynthetic pathway that compromises cell survival is efficiently rescued by many single mutations (12 at least) in the gene of glutamine synthetase. The mutations cause the leakage to the intracellular milieu of a sequestered phosphorylated intermediate common to the biosynthetic pathways of proline and glutamine, thus generating a new route to proline. Metabolic intermediates may undergo a variety of chemical and enzymatic transformations, but are typically protected as shielded reaction intermediates or through channeling in multi-enzyme complexes and metabolons (Srere, 1987; Huang et al., 2001; Grunwald, 2018; Pareek et al., 2021). Our results show that intermediate leakage can readily occur and contribute to organismal adaptation. Enhanced availability of reactive molecules may enable the generation of new biochemical pathways. We therefore anticipate applications of mutation-induced leakage in metabolic engineering.
References
More filters
Journal ArticleDOI
TL;DR: This work states that rapid advances in network biology indicate that cellular networks are governed by universal laws and offer a new conceptual framework that could potentially revolutionize the view of biology and disease pathologies in the twenty-first century.
Abstract: A key aim of postgenomic biomedical research is to systematically catalogue all molecules and their interactions within a living cell. There is a clear need to understand how these molecules and the interactions between them determine the function of this enormously complex machinery, both in isolation and when surrounded by other cells. Rapid advances in network biology indicate that cellular networks are governed by universal laws and offer a new conceptual framework that could potentially revolutionize our view of biology and disease pathologies in the twenty-first century.

7,475 citations

Journal ArticleDOI
TL;DR: Advances in this direction are essential for identifying new disease genes, for uncovering the biological significance of disease-associated mutations identified by genome-wide association studies and full-genome sequencing, and for identifying drug targets and biomarkers for complex diseases.
Abstract: Given the functional interdependencies between the molecular components in a human cell, a disease is rarely a consequence of an abnormality in a single gene, but reflects the perturbations of the complex intracellular and intercellular network that links tissue and organ systems. The emerging tools of network medicine offer a platform to explore systematically not only the molecular complexity of a particular disease, leading to the identification of disease modules and pathways, but also the molecular relationships among apparently distinct (patho)phenotypes. Advances in this direction are essential for identifying new disease genes, for uncovering the biological significance of disease-associated mutations identified by genome-wide association studies and full-genome sequencing, and for identifying drug targets and biomarkers for complex diseases.

3,978 citations

Journal ArticleDOI
23 May 2002-Nature
TL;DR: Comprehensive protein–protein interaction maps promise to reveal many aspects of the complex regulatory network underlying cellular function and are compared with each other and with a reference set of previously reported protein interactions.
Abstract: Comprehensive protein protein interaction maps promise to reveal many aspects of the complex regulatory network underlying cellular function. Recently, large-scale approaches have predicted many new protein interactions in yeast. To measure their accuracy and potential as well as to identify biases, strengths and weaknesses, we compare the methods with each other and with a reference set of previously reported protein interactions.

2,432 citations

Journal ArticleDOI
10 Oct 2003-Science
TL;DR: By assembling these links into a gene-coexpression network, this work found several components that were animal-specific as well as interrelationships between newly evolved and ancient modules.
Abstract: To elucidate gene function on a global scale, we identified pairs of genes that are coexpressed over 3182 DNA microarrays from humans, flies, worms, and yeast. We found 22,163 such coexpression relationships, each of which has been conserved across evolution. This conservation implies that the coexpression of these gene pairs confers a selective advantage and therefore that these genes are functionally related. Manyof these relationships provide strong evidence for the involvement of new genes in core biological functions such as the cell cycle, secretion, and protein expression. We experimentallyconfirmed the predictions implied bysome of these links and identified cell proliferation functions for several genes. By assembling these links into a gene-coexpression network, we found several components that were animal-specific as well as interrelationships between newly evolved and ancient modules.

2,210 citations

Journal ArticleDOI
24 Nov 2006-Science
TL;DR: The positional cloning of Gpc-B1, a wheat quantitative trait locus associated with increased grain protein, zinc, and iron content, is reported here, and reduction in RNA levels of the multiple NAM homologs by RNA interference delayed senescence by more than 3 weeks and reduced wheat grain protein and zinc content.
Abstract: Enhancing the nutritional value of food crops is a means of improving human nutrition and health. We report here the positional cloning of Gpc-B1, a wheat quantitative trait locus associated with increased grain protein, zinc, and iron content. The ancestral wild wheat allele encodes a NAC transcription factor (NAM-B1) that accelerates senescence and increases nutrient remobilization from leaves to developing grains, whereas modern wheat varieties carry a nonfunctional NAM-B1 allele. Reduction in RNA levels of the multiple NAM homologs by RNA interference delayed senescence by more than 3 weeks and reduced wheat grain protein, zinc, and iron content by more than 30%.

1,377 citations