scispace - formally typeset
Search or ask a question
Journal ArticleDOI

From Resistance to Transformation: A Generic Metric of Resilience Through Viability

01 Jul 2018-Earth’s Future (John Wiley & Sons Ltd.)-Vol. 6, Iss: 7, pp 979-996
About: This article is published in Earth’s Future.The article was published on 2018-07-01 and is currently open access. It has received 47 citations till now. The article focuses on the topics: Resilience (network).
Citations
More filters
Journal ArticleDOI
TL;DR: The review of existing accounts on COVID-19 suggests that, with the exception of those who lost members of their family to the virus, the main impact of the pandemic derives mainly from the lockdown and mobility restrictions imposed by national/local governments, and the consequence that the subsequent loss of income and purchasing power has on people’s food security, in particular the poor.
Abstract: The objective of this review is to explore and discuss the concept of local food system resilience in light of the disruptions brought to those systems by the 2020 COVID-19 pandemic. The discussion, which focuses on low and middle income countries, considers also the other shocks and stressors that generally affect local food systems and their actors in those countries (weather-related, economic, political or social disturbances). The review of existing (mainly grey or media-based) accounts on COVID-19 suggests that, with the exception of those who lost members of their family to the virus, as per June 2020 the main impact of the pandemic derives mainly from the lockdown and mobility restrictions imposed by national/local governments, and the consequence that the subsequent loss of income and purchasing power has on people's food security, in particular the poor. The paper then uses the most prominent advances made recently in the literature on household resilience in the context of food security and humanitarian crises to identify a series of lessons that can be used to improve our understanding of food system resilience and its link to food security in the context of the COVID-19 crisis and other shocks. Those lessons include principles about the measurement of food system resilience and suggestions about the types of interventions that could potentially strengthen the abilities of actors (including policy makers) to respond more appropriately to adverse events affecting food systems in the future.

417 citations


Cites background from "From Resistance to Transformation: ..."

  • ...Many definitions of resilience exist in the literature across the different domains where resilience is being used (see e.g. Windle 2011; Patel et al. 2017; Béné and Doyen 2018; Barasa et al. 2018)....

    [...]

Journal ArticleDOI
TL;DR: Treating infrastructure as SETS shows promise for increasing the adaptive capacity of infrastructure systems by highlighting how lock‐in and vulnerabilities evolve and how multidisciplinary strategies can be deployed to address these challenges by broadening the options for adaptation.
Abstract: Traditional infrastructure adaptation to extreme weather events (and now climate change) has typically been techno-centric and heavily grounded in robustness—the capacity to prevent or minimize disruptions via a risk-based approach that emphasizes control, armoring, and strengthening (e.g., raising the height of levees). However, climate and nonclimate challenges facing infrastructure are not purely technological. Ecological and social systems also warrant consideration to manage issues of overconfidence, inflexibility, interdependence, and resource utilization—among others. As a result, techno-centric adaptation strategies can result in unwanted tradeoffs, unintended consequences, and underaddressed vulnerabilities. Techno-centric strategies that lock-in today’s infrastructure systems to vulnerable future design, management, and regulatory practices may be particularly problematic by exacerbating these ecological and social issues rather than ameliorating them. Given these challenges, we develop a conceptual model and infrastructure adaptation case studies to argue the following: (1) infrastructure systems are not simply technological and should be understood as complex and interconnected social, ecological, and technological systems (SETSs); (2) infrastructure challenges, like lock-in, stem from SETS interactions that are often overlooked and underappreciated; (3) framing infrastructure with a SETS lens can help identify and prevent maladaptive issues like lock-in; and (4) a SETS lens can also highlight effective infrastructure adaptation strategies that may not traditionally be considered. Ultimately, we find that treating infrastructure as SETS shows promise for increasing the adaptive capacity of infrastructure systems by highlighting how lock-in and vulnerabilities evolve and how multidisciplinary strategies can be deployed to address these challenges by broadening the options for adaptation. Plain Language Summary Instead of thinking of infrastructure as purely technological artifacts, we instead propose considering infrastructure as linked social, ecological, and technological systems (SETS). Adopting a SETS lens can help identify vulnerabilities that develop within infrastructure systems over time. Ultimately, adopting this SETS perspective will not only help us better understand our infrastructure systems, but also aid in the development strategies for adapting to the many challenges that our infrastructure will continue to face (climate change, interdependencies, technological evolution, growing complexity, etc.)

147 citations


Additional excerpts

  • ...…Folke (1998), Walker et al. (2002), Edwards (2003), Anderies et al. (2004), Walker et al. (2004), Folke et al. (2005), Folke (2006), Walker et al. (2006), Ostrom (2009), Fischer et al. (2015), Muneepeerakul and Anderies (2017), Bene and Doyen (2018), Garrick et al. (2018), and Walker et al. (2018)....

    [...]

Journal ArticleDOI
01 Oct 2019
TL;DR: In this article, the authors define social-ecological resilience as a property of social ecological systems that includes resistance, recovery and robustness (the "three Rs"), and integrate the three Rs into a heuristic for resilience management that they apply in multiple management contexts to offer practical, systematic guidance about how to realize resilience.
Abstract: Researchers and decision-makers lack a shared understanding of resilience, and practical applications in environmental resource management are rare. Here, we define social-ecological resilience as a property of social-ecological systems that includes at least three main characteristics — resistance, recovery and robustness (the ‘three Rs’). We define socio-economic resilience management as planning, adaptation and transformational actions that may influence these system characteristics. We integrate the three Rs into a heuristic for resilience management that we apply in multiple management contexts to offer practical, systematic guidance about how to realize resilience.

95 citations

Journal ArticleDOI
TL;DR: In this paper, a rigorous, science-based monitoring framework can support evidence-based policymaking and the work of those who hold key actors accountable in this transformation process, which can illustrate current performance, facilitate comparisons across geographies and over time, and track progress.

84 citations

Journal ArticleDOI
TL;DR: In the context of increasing climate-related extreme events and other crises, the concept of adaptive social protection (ASP) has been recognized as a potentially effective policy response to reduce the impacts of these shocks and stressors on vulnerable households as mentioned in this paper.
Abstract: In the context of increasing climate-related extreme events and other crises, the concept of adaptive social protection (ASP) has been recognized as a potentially effective policy response to reduce the impacts of these shocks and stressors on vulnerable households. The concept is currently being tested at scale by the World Bank in six countries in the Sahel region. Based on conceptual considerations, this paper aims to address three questions: How and to what extent can adaptive social protection be considered transformative? Where does this concept sit along the humanitarian–development continuum? And, how does it relate to resilience? To answer these questions the paper draws on the authors’ exposure to the on-going World Bank ASP program, as well as documents derived from the emerging body of literature on climate- and shock-responsive social protection. Drawing on these different materials the paper first demonstrates that ASP can effectively be considered as a transformative intervention at two different levels: at the system level and at the beneficiaries’ level. The paper also shows how, through its activities designed to strengthen households’ adaptive capacity, an ASP program can contribute to building resilience beyond the short-term coping strategies which humanitarian interventions generally focus on. As such ASP covers a larger spectrum along the humanitarian–development continuum than most other interventions proposed in the context of shock-responsive interventions.

30 citations

References
More filters
Journal ArticleDOI
TL;DR: The traditional view of natural systems, therefore, might well be less a meaningful reality than a perceptual convenience.
Abstract: Individuals die, populations disappear, and species become extinct. That is one view of the world. But another view of the world concentrates not so much on presence or absence as upon the numbers of organisms and the degree of constancy of their numbers. These are two very different ways of viewing the behavior of systems and the usefulness of the view depends very much on the properties of the system concerned. If we are examining a particular device designed by the engineer to perform specific tasks under a rather narrow range of predictable external conditions, we are likely to be more concerned with consistent nonvariable performance in which slight departures from the performance goal are immediately counteracted. A quantitative view of the behavior of the system is, therefore, essential. With attention focused upon achieving constancy, the critical events seem to be the amplitude and frequency of oscillations. But if we are dealing with a system profoundly affected by changes external to it, and continually confronted by the unexpected, the constancy of its behavior becomes less important than the persistence of the relationships. Attention shifts, therefore, to the qualitative and to questions of existence or not. Our traditions of analysis in theoretical and empirical ecology have been largely inherited from developments in classical physics and its applied variants. Inevitably, there has been a tendency to emphasize the quantitative rather than the qualitative, for it is important in this tradition to know not just that a quantity is larger than another quantity, but precisely how much larger. It is similarly important, if a quantity fluctuates, to know its amplitude and period of fluctuation. But this orientation may simply reflect an analytic approach developed in one area because it was useful and then transferred to another where it may not be. Our traditional view of natural systems, therefore, might well be less a meaningful reality than a perceptual convenience. There can in some years be more owls and fewer mice and in others, the reverse. Fish populations wax and wane as a natural condition, and insect populations can range over extremes that only logarithmic

13,447 citations

Journal ArticleDOI
TL;DR: The concept of resilience has evolved considerably since Holling's (1973) seminal paper as discussed by the authors and different interpretations of what is meant by resilience, however, cause confusion, and it can be counterproductive to seek definitions that are too narrow.
Abstract: The concept of resilience has evolved considerably since Holling’s (1973) seminal paper. Different interpretations of what is meant by resilience, however, cause confusion. Resilience of a system needs to be considered in terms of the attributes that govern the system’s dynamics. Three related attributes of social– ecological systems (SESs) determine their future trajectories: resilience, adaptability, and transformability. Resilience (the capacity of a system to absorb disturbance and reorganize while undergoing change so as to still retain essentially the same function, structure, identity, and feedbacks) has four components—latitude, resistance, precariousness, and panarchy—most readily portrayed using the metaphor of a stability landscape. Adaptability is the capacity of actors in the system to influence resilience (in a SES, essentially to manage it). There are four general ways in which this can be done, corresponding to the four aspects of resilience. Transformability is the capacity to create a fundamentally new system when ecological, economic, or social structures make the existing system untenable. The implications of this interpretation of SES dynamics for sustainability science include changing the focus from seeking optimal states and the determinants of maximum sustainable yield (the MSY paradigm), to resilience analysis, adaptive resource management, and adaptive governance. INTRODUCTION An inherent difficulty in the application of these concepts is that, by their nature, they are rather imprecise. They fall into the same sort of category as “justice” or “wellbeing,” and it can be counterproductive to seek definitions that are too narrow. Because different groups adopt different interpretations to fit their understanding and purpose, however, there is confusion in their use. The confusion then extends to how a resilience approach (Holling 1973, Gunderson and Holling 2002) can contribute to the goals of sustainable development. In what follows, we provide an interpretation and an explanation of how these concepts are reflected in the adaptive cycles of complex, multi-scalar SESs. We need a better scientific basis for sustainable development than is generally applied (e.g., a new “sustainability science”). The “Consortium for Sustainable Development” (of the International Council for Science, the Initiative on Science and Technology for Sustainability, and the Third World Academy of Science), the US National Research Council (1999, 2002), and the Millennium Ecosystem Assessment (2003), have all focused increasing attention on such notions as robustness, vulnerability, and risk. There is good reason for this, as it is these characteristics of social–ecological systems (SESs) that will determine their ability to adapt to and benefit from change. In particular, the stability dynamics of all linked systems of humans and nature emerge from three complementary attributes: resilience, adaptability, and transformability. The purpose of this paper is to examine these three attributes; what they mean, how they interact, and their implications for our future well-being. There is little fundamentally new theory in this paper. What is new is that it uses established theory of nonlinear stability (Levin 1999, Scheffer et al. 2001, Gunderson and Holling 2002, Berkes et al. 2003) to clarify, explain, and diagnose known examples of regional development, regional poverty, and regional CSIRO Sustainable Ecosystems; University of Wisconsin-Madison; Arizona State University Ecology and Society 9(2): 5. http://www.ecologyandsociety.org/vol9/iss2/art5 sustainability. These include, among others, the Everglades and the Wisconsin Northern Highlands Lake District in the USA, rangelands and an agricultural catchment in southeastern Australia, the semi-arid savanna in southeastern Zimbabwe, the Kristianstad “Water Kingdom” in southern Sweden, and the Mae Ping valley in northern Thailand. These regions provide examples of both successes and failures of development. Some from rich countries have generated several pulses of solutions over a span of a hundred years and have generated huge costs of recovery (the Everglades). Some from poor countries have emerged in a transformed way but then, in some cases, have been dragged back by higher-level autocratic regimes (Zimbabwe). Some began as localscale solutions and then developed as transformations across scales from local to regional (Kristianstad and northern Wisconsin). In all of them, the outcomes were determined by the interplay of their resilience, adaptability, and transformability. There is a major distinction between resilience and adaptability, on the one hand, and transformability on the other. Resilience and adaptability have to do with the dynamics of a particular system, or a closely related set of systems. Transformability refers to fundamentally altering the nature of a system. As with many terms under the resilience rubric, the dividing line between “closely related” and “fundamentally altered” can be fuzzy, and subject to interpretation. So we begin by first offering the most general, qualitative set of definitions, without reference to conceptual frameworks, that can be used to describe these terms. We then use some examples and the literature on “basins of attraction” and “stability landscapes” to further refine our definitions. Before giving the definitions, however, we need to briefly introduce the concept of adaptive cycles. Adaptive Cycles and Cross-scale Effects The dynamics of SESs can be usefully described and analyzed in terms of a cycle, known as an adaptive cycle, that passes through four phases. Two of them— a growth and exploitation phase (r) merging into a conservation phase (K)—comprise a slow, cumulative forward loop of the cycle, during which the dynamics of the system are reasonably predictable. As the K phase continues, resources become increasingly locked up and the system becomes progressively less flexible and responsive to external shocks. It is eventually, inevitably, followed by a chaotic collapse and release phase (Ω) that rapidly gives way to a phase of reorganization (α), which may be rapid or slow, and during which, innovation and new opportunities are possible. The Ω and α phases together comprise an unpredictable backloop. The α phase leads into a subsequent r phase, which may resemble the previous r phase or be significantly different. This metaphor of the adaptive cycle is based on observed system changes, and does not imply fixed, regular cycling. Systems can move back from K toward r, or from r directly into Ω, or back from α to Ω. Finally (and importantly), the cycles occur at a number of scales and SESs exist as “panarchies”— adaptive cycles interacting across multiple scales. These cross-scale effects are of great significance in the dynamics of SESs.

5,745 citations


"From Resistance to Transformation: ..." refers background or methods in this paper

  • ...These four dimensions, namely, resistance, absorptive capacity, adaptive capacity, and transformative capacity, are the most widely accepted dimensions of resilience (Béné et al., 2014; Folke et al., 2010; Olsson et al., 2015; Walker et al., 2004)....

    [...]

  • ...One of the emerging conclusions of this literature is the need to recognize and to integrate the “multiform” nature of resilience; that is, the fact that resilience results, or emerges, from a combination of different properties (or capacities), ranging from resistance to coping strategies, adaptive preference, adaptive capacity, and eventually transformability (Berkes et al., 2003; Béné et al., 2012; Enfors et al., 2011; Walker et al., 2004)....

    [...]

  • ...As part of this formalization, and in line with the literature, we characterized those different categories of resilience strategies with regard to the degree/intensity of changes in the dynamics of the systems (Berkes et al., 2003; Cutter et al., 2008; Folke, 2006; Folke et al., 2010; Walker et al., 2004)....

    [...]

  • ...In sum the literature confirms that resilience can be conceptualized as the combination of various types of responses that vary greatly in nature and intensity and lead to different outcomes (Walker et al., 2004)....

    [...]

Journal ArticleDOI
TL;DR: The resilience perspective is increasingly used as an approach for understanding the dynamics of social-ecological systems as mentioned in this paper, which emphasizes non-linear dynamics, thresholds, uncertainty and surprise, how periods of gradual change interplay with periods of rapid change and how such dynamics interact across temporal and spatial scales.
Abstract: The resilience perspective is increasingly used as an approach for understanding the dynamics of social–ecological systems. This article presents the origin of the resilience perspective and provides an overview of its development to date. With roots in one branch of ecology and the discovery of multiple basins of attraction in ecosystems in the 1960–1970s, it inspired social and environmental scientists to challenge the dominant stable equilibrium view. The resilience approach emphasizes non-linear dynamics, thresholds, uncertainty and surprise, how periods of gradual change interplay with periods of rapid change and how such dynamics interact across temporal and spatial scales. The history was dominated by empirical observations of ecosystem dynamics interpreted in mathematical models, developing into the adaptive management approach for responding to ecosystem change. Serious attempts to integrate the social dimension is currently taking place in resilience work reflected in the large numbers of sciences involved in explorative studies and new discoveries of linked social–ecological systems. Recent advances include understanding of social processes like, social learning and social memory, mental models and knowledge–system integration, visioning and scenario building, leadership, agents and actor groups, social networks, institutional and organizational inertia and change, adaptive capacity, transformability and systems of adaptive governance that allow for management of essential ecosystem services.

4,899 citations


"From Resistance to Transformation: ..." refers background or methods in this paper

  • ...…more elaborate concept where it “is no longer simply about resistance to change and conservation of existing structures [the engineering definition]” (Folke, 2006, p.7) or even about “buffer capacity and persistence to change while maintaining the same function” (the ecological definition) but…...

    [...]

  • ...As part of this formalization, and in line with the literature, we characterized those different categories of resilience strategies with regard to the degree/intensity of changes in the dynamics of the systems (Berkes et al., 2003; Cutter et al., 2008; Folke, 2006; Folke et al., 2010; Walker et al., 2004)....

    [...]

  • ...…this formalization, and in line with the literature, we characterized those different categories of resilience strategies with regard to the degree/intensity of changes in the dynamics of the systems (Berkes et al., 2003; Cutter et al., 2008; Folke, 2006; Folke et al., 2010; Walker et al., 2004)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new approach to global sustainability in which they define planetary boundaries within which they expect that humanity can operate safely. But the proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development.
Abstract: Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due to the risk of crossing thresholds that will trigger non-linear, abrupt environmental change within continental- to planetary-scale systems. We have identified nine planetary boundaries and, drawing upon current scientific understanding, we propose quantifications for seven of them. These seven are climate change (CO2 concentration in the atmosphere <350 ppm and/or a maximum change of +1 W m-2 in radiative forcing); ocean acidification (mean surface seawater saturation state with respect to aragonite ≥ 80% of pre-industrial levels); stratospheric ozone (<5% reduction in O3 concentration from pre-industrial level of 290 Dobson Units); biogeochemical nitrogen (N) cycle (limit industrial and agricultural fixation of N2 to 35 Tg N yr-1) and phosphorus (P) cycle (annual P inflow to oceans not to exceed 10 times the natural background weathering of P); global freshwater use (<4000 km3 yr-1 of consumptive use of runoff resources); land system change (<15% of the ice-free land surface under cropland); and the rate at which biological diversity is lost (annual rate of <10 extinctions per million species). The two additional planetary boundaries for which we have not yet been able to determine a boundary level are chemical pollution and atmospheric aerosol loading. We estimate that humanity has already transgressed three planetary boundaries: for climate change, rate of biodiversity loss, and changes to the global nitrogen cycle. Planetary boundaries are interdependent, because transgressing one may both shift the position of other boundaries or cause them to be transgressed. The social impacts of transgressing boundaries will be a function of the social-ecological resilience of the affected societies. Our proposed boundaries are rough, first estimates only, surrounded by large uncertainties and knowledge gaps. Filling these gaps will require major advancements in Earth System and resilience science. The proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development. Planetary boundaries define, as it were, the boundaries of the "planetary playing field" for humanity if we want to be sure of avoiding major human-induced environmental change on a global scale.

4,771 citations

Journal ArticleDOI
15 Aug 2003-Science
TL;DR: International integration of management strategies that support reef resilience need to be vigorously implemented, and complemented by strong policy decisions to reduce the rate of global warming.
Abstract: The diversity, frequency, and scale of human impacts on coral reefs are increasing to the extent that reefs are threatened globally. Projected increases in carbon dioxide and temperature over the next 50 years exceed the conditions under which coral reefs have flourished over the past half-million years. However, reefs will change rather than disappear entirely, with some species already showing far greater tolerance to climate change and coral bleaching than others. International integration of management strategies that support reef resilience need to be vigorously implemented, and complemented by strong policy decisions to reduce the rate of global warming.

3,664 citations