scispace - formally typeset
Search or ask a question
Journal ArticleDOI

From the connectome to brain function

01 Jun 2013-Nature Methods (Nature Research)-Vol. 10, Iss: 6, pp 483-490
TL;DR: This Historical Perspective asks what information is needed beyond connectivity diagrams to understand the function of nervous systems, and highlights the importance of neuronal dynamics and neuromodulation, and the existence of parallel circuits.
Abstract: In this Historical Perspective, we ask what information is needed beyond connectivity diagrams to understand the function of nervous systems. Informed by invertebrate circuits whose connectivities are known, we highlight the importance of neuronal dynamics and neuromodulation, and the existence of parallel circuits. The vertebrate retina has these features in common with invertebrate circuits, suggesting that they are general across animals. Comparisons across these systems suggest approaches to study the functional organization of large circuits based on existing knowledge of small circuits.
Citations
More filters
Journal ArticleDOI
10 Apr 2014-Nature
TL;DR: A brain-wide, cellular-level, mesoscale connectome for the mouse, using enhanced green fluorescent protein-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain.
Abstract: Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease.

2,051 citations

Journal ArticleDOI
22 Oct 2014-Neuron
TL;DR: This Perspective uses the term "chronnectome" to describe metrics that allow a dynamic view of coupling and focuses on multivariate approaches developed in the group and review a number of approaches with an emphasis on matrix decompositions such as principle component analysis and independent component analysis.

1,148 citations

Journal ArticleDOI
26 Jul 2018-Cell
TL;DR: Recon reconstructions of the entire brain of an adult female fly show that this freely available EM volume supports mapping of brain-spanning circuits, which will significantly accelerate Drosophila neuroscience.

650 citations

Journal ArticleDOI
19 Oct 2016-Neuron
TL;DR: Time-resolved network analysis of fMRI data shows a direct link between cognitive performance and the dynamic reorganization of the network structure of the brain, suggesting that ascending neuromodulatory systems may govern the transition between these alternative modes of brain function.

628 citations

Journal ArticleDOI
Rafael Yuste1
TL;DR: As a new paradigm for neuroscience, neural network models have the potential to incorporate knowledge acquired with single-neuron approaches to help us understand how emergent functional states generate behaviour, cognition and mental disease.
Abstract: For over a century, the neuron doctrine--which states that the neuron is the structural and functional unit of the nervous system--has provided a conceptual foundation for neuroscience This viewpoint reflects its origins in a time when the use of single-neuron anatomical and physiological techniques was prominent However, newer multineuronal recording methods have revealed that ensembles of neurons, rather than individual cells, can form physiological units and generate emergent functional properties and states As a new paradigm for neuroscience, neural network models have the potential to incorporate knowledge acquired with single-neuron approaches to help us understand how emergent functional states generate behaviour, cognition and mental disease

579 citations

References
More filters
Journal ArticleDOI
25 Oct 2002-Science
TL;DR: Network motifs, patterns of interconnections occurring in complex networks at numbers that are significantly higher than those in randomized networks, are defined and may define universal classes of networks.
Abstract: Complex networks are studied across many fields of science. To uncover their structural design principles, we defined “network motifs,” patterns of interconnections occurring in complex networks at numbers that are significantly higher than those in randomized networks. We found such motifs in networks from biochemistry, neurobiology, ecology, and engineering. The motifs shared by ecological food webs were distinct from the motifs shared by the genetic networks of Escherichia coli and Saccharomyces cerevisiae or from those found in the World Wide Web. Similar motifs were found in networks that perform information processing, even though they describe elements as different as biomolecules within a cell and synaptic connections between neurons in Caenorhabditis elegans. Motifs may thus define universal classes of networks. This

6,992 citations

Journal ArticleDOI
TL;DR: The structure and connectivity of the nervous system of the nematode Caenorhabditis elegans has been deduced from reconstructions of electron micrographs of serial sections as discussed by the authors.
Abstract: The structure and connectivity of the nervous system of the nematode Caenorhabditis elegans has been deduced from reconstructions of electron micrographs of serial sections. The hermaphrodite nervous system has a total complement of 302 neurons, which are arranged in an essentially invariant structure. Neurons with similar morphologies and connectivities have been grouped together into classes; there are 118 such classes. Neurons have simple morphologies with few, if any, branches. Processes from neurons run in defined positions within bundles of parallel processes, synaptic connections being made en passant. Process bundles are arranged longitudinally and circumferentially and are often adjacent to ridges of hypodermis. Neurons are generally highly locally connected, making synaptic connections with many of their neighbours. Muscle cells have arms that run out to process bundles containing motoneuron axons. Here they receive their synaptic input in defined regions along the surface of the bundles, where motoneuron axons reside. Most of the morphologically identifiable synaptic connections in a typical animal are described. These consist of about 5000 chemical synapses, 2000 neuromuscular junctions and 600 gap junctions.

5,491 citations

Journal ArticleDOI
TL;DR: The evidence for this hypothesis, and the origins of the different kinetic phases of synaptic enhancement, as well as the interpretation of statistical changes in transmitter release and roles played by other factors such as alterations in presynaptic Ca(2+) influx or postsynaptic levels of [Ca(2+)]i are discussed.
Abstract: ▪ Abstract Synaptic transmission is a dynamic process. Postsynaptic responses wax and wane as presynaptic activity evolves. This prominent characteristic of chemical synaptic transmission is a crucial determinant of the response properties of synapses and, in turn, of the stimulus properties selected by neural networks and of the patterns of activity generated by those networks. This review focuses on synaptic changes that result from prior activity in the synapse under study, and is restricted to short-term effects that last for at most a few minutes. Forms of synaptic enhancement, such as facilitation, augmentation, and post-tetanic potentiation, are usually attributed to effects of a residual elevation in presynaptic [Ca2+]i, acting on one or more molecular targets that appear to be distinct from the secretory trigger responsible for fast exocytosis and phasic release of transmitter to single action potentials. We discuss the evidence for this hypothesis, and the origins of the different kinetic phases...

4,687 citations

Journal ArticleDOI
TL;DR: In this article, the locus coeruleus-norepinephrine (LC-NE) system plays a more complex and specific role in the control of behavior than investigators previously thought.
Abstract: Historically, the locus coeruleus-norepinephrine (LC-NE) system has been implicated in arousal, but recent findings suggest that this system plays a more complex and specific role in the control of behavior than investigators previously thought. We review neurophysiological and modeling studies in monkey that support a new theory of LC-NE function. LC neurons exhibit two modes of activity, phasic and tonic. Phasic LC activation is driven by the outcome of task-related decision processes and is proposed to facilitate ensuing behaviors and to help optimize task performance (exploitation). When utility in the task wanes, LC neurons exhibit a tonic activity mode, associated with disengagement from the current task and a search for alternative behaviors (exploration). Monkey LC receives prominent, direct inputs from the anterior cingulate (ACC) and orbitofrontal cortices (OFC), both of which are thought to monitor task-related utility. We propose that these frontal areas produce the above patterns of LC activity to optimize utility on both short and long timescales.

3,441 citations

Journal ArticleDOI
TL;DR: It is argued that the time is right to begin assimilating the wealth of data that has been accumulated over the past century and start building biologically accurate models of the brain from first principles to aid the understanding of brain function and dysfunction.
Abstract: Markram describes the impressive aims of the Blue Brain Project, in which the enormous computing power of IBM's Blue Gene supercomputer is being harnessed to build biologically accurate models of the neocortical column and, ultimately, the whole brain.

1,243 citations