scispace - formally typeset
Search or ask a question
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

15 Jan 1999-Physical Review B (American Physical Society)-Vol. 59, Iss: 3, pp 1758-1775
TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Abstract: The formal relationship between ultrasoft (US) Vanderbilt-type pseudopotentials and Bl\"ochl's projector augmented wave (PAW) method is derived. It is shown that the total energy functional for US pseudopotentials can be obtained by linearization of two terms in a slightly modified PAW total energy functional. The Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional. A simple way to implement the PAW method in existing plane-wave codes supporting US pseudopotentials is pointed out. In addition, critical tests are presented to compare the accuracy and efficiency of the PAW and the US pseudopotential method with relaxed core all electron methods. These tests include small molecules $({\mathrm{H}}_{2}{,\mathrm{}\mathrm{H}}_{2}{\mathrm{O},\mathrm{}\mathrm{Li}}_{2}{,\mathrm{}\mathrm{N}}_{2}{,\mathrm{}\mathrm{F}}_{2}{,\mathrm{}\mathrm{BF}}_{3}{,\mathrm{}\mathrm{SiF}}_{4})$ and several bulk systems (diamond, Si, V, Li, Ca, ${\mathrm{CaF}}_{2},$ Fe, Co, Ni). Particular attention is paid to the bulk properties and magnetic energies of Fe, Co, and Ni.
Citations
More filters
Journal ArticleDOI
TL;DR: It is found that embedded transitionMetal elements in general can significantly enhance the interactions between gas molecules and graphene, and for applications of graphene-based catalysis, Ti and Au may be the best choices among all transition metal elements.
Abstract: We report an investigation on the adsorption of small gas molecules (O(2), CO, NO(2) and NH(3)) on pristine and various transition metal embedded graphene samples using a first-principles approach based on density-functional theory (DFT). The most stable adsorption geometry, energy, charge transfer, and magnetic moment of these molecules on graphene embedded with different transition metal elements are thoroughly discussed. Our calculations found that embedded transition metal elements in general can significantly enhance the interactions between gas molecules and graphene, and for applications of graphene-based catalysis, Ti and Au may be the best choices among all transition metal elements. We also expect a detailed analysis of the electronic structures and magnetic properties of these systems to shed light on future applications of graphene-based gas sensing and spintronics.

287 citations

Journal ArticleDOI
TL;DR: In this paper, the local concentration of mobile carbon adatoms from which graphene sheets form on a Ru(0001) surface was measured, and simultaneously, the growth rates of individual graphene islands.
Abstract: Using low-energy electron microscopy (LEEM), we have measured the local concentration of mobile carbon adatoms from which graphene sheets form on a Ru(0001) surface, and simultaneously, the growth rates of individual graphene islands. Graphene crystal growth on Ru differs strikingly from that of two-dimensional metal islands on metals: (i) C adatoms experience a large energy barrier to attaching to graphene step edges, so adatom diffusion does not limit growth. (ii) The supersaturations needed for appreciable growth rates are comparable to those required to nucleate islands. (iii) The growth rate is a highly nonlinear function of supersaturation, with a large activation energy (2.0±0.1 eV). Our analysis suggests that graphene grows by adding rare clusters of about five atoms rather than adding the abundant monomers (adatoms). Knowing the growth mechanism and monitoring the supersaturation, we can control the pattern of growing graphene sheets.

287 citations


Cites methods from "From ultrasoft pseudopotentials to ..."

  • ...We used VASP [22, 23], in the PW91 generalized gradient approximation [24], for energy optimization, with electron–core interactions treated in the projector augmented wave approximation [25, 26]....

    [...]

Journal ArticleDOI
TL;DR: This work reports efficient photo-generated charge separation by twin-induced one-dimensional homojunctions with type-II staggered band alignment, using a ternary chalcogenate as a model material to highlight the power of forming long-range ordered homojunction at the nanoscale for photocatalytic and photoelectrochemical applications.
Abstract: Efficient charge separation is of crucial importance for enhanced performance of photocatalysts. Here the authors demonstrate efficient charge separation by twin induced one-dimensional homojunctions, which have a high efficiency for solar hydrogen evolution without the need for additional dopants.

287 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the effect of biaxial lattice strain on the oxygen anion diffusivity in Y2O3 stabilized ZrO2 (YSZ) and found that the increase in the migration space and the weakening of the local oxygencation bonds correspond to a decrease of the migration barrier, and vice versa.
Abstract: We present the mechanism and the extent of increase in the oxygen anion diffusivity in Y2O3 stabilized ZrO2 (YSZ) under biaxial lattice strain. The oxygen vacancy migration paths and barriers in YSZ as a function of lattice strain was assessed computationally using density functional theory (DFT) and nudged elastic band (NEB) method. Two competing and non-linear processes acting in parallel were identified to alter the migration barrier upon applied strain: (1) the change in the space, or electronic density, along the migration path, and (2) the change in the strength of the interatomic bonds between the migrating oxygen and the nearest neighbor cations that keep the oxygen from migrating. The increase of the migration space and the weakening of the local oxygen–cation bonds correspond to a decrease of the migration barrier, and vice versa. The contribution of the bond strength to the changes in the migration barrier is more significant than that of the opening of migration space in strained YSZ. A database of migration barrier energies as a function of lattice strain for a set of representative defect distributions in the vicinity of the migration path in YSZ was constructed. This database was used in kinetic Monte Carlo (KMC) simulations to estimate the effective oxygen diffusivity in strained YSZ. The oxygen diffusivity exhibits an exponential increase up to a critical value of tensile strain, or the fastest strain. This increase is more significant at the lower temperatures. At the strain states higher than the critical strain, the diffusivity decreases. This is attributed to the local relaxations at large strain states beyond a limit of elastic bond strain, resulting in the strengthening of the local oxygen–cation bonds that increases the migration barrier. The highest enhancement of diffusivity in 9%-YSZ compared to its unstrained state is 6.8 × 103 times at 4% strain and at 400 K. The results indicate that inducing an optimal strain state by direct mechanical load or by creating a coherent hetero-interface with lattice mismatch can enable desirably high ionic conductivity in YSZ at reduced temperatures. The insights gained here particularly on the nonlinear and competing consequences of lattice strain on the local bonding structure and charge transport process are of importance for tuning the ionic transport properties in a variety of solid-state conducting material applications, including but not limited to fuel cells.

287 citations

Journal ArticleDOI
TL;DR: An etching-intralayered Ostwald ripening process is proposed, which leads to the formation of a β-Ni(OH)2 ultrathin nanomesh with abundant and uniformly distributed nanopores of 3-4 nm, making this Earth-abundant nanomeh catalyst a promising candidate for commercial water splitting.
Abstract: An etching-intralayered Ostwald ripening process is proposed, which leads to the formation of a β-Ni(OH)2 ultrathin nanomesh with abundant and uniformly distributed nanopores of 3-4 nm. The nanomesh catalyst exhibits outstanding oxygen evolution reaction performance, with high catalytic current density and superior long-term stability, making this Earth-abundant nanomesh catalyst a promising candidate for commercial water splitting.

287 citations

References
More filters
Book
31 Dec 1993
TL;DR: The linearized augmented planewave (LAPW) method has emerged as the standard by which density functional calculations for transition metal and rare-earth containing materials are judged.
Abstract: With its extreme accuracy and reasonable computational efficiency, the linearized augmented planewave (LAPW) method has emerged as the standard by which density functional calculations for transition metal and rare-earth containing materials are judged. This volume presents a thorough and self-conta

1,150 citations