scispace - formally typeset
Search or ask a question
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

15 Jan 1999-Physical Review B (American Physical Society)-Vol. 59, Iss: 3, pp 1758-1775
TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Abstract: The formal relationship between ultrasoft (US) Vanderbilt-type pseudopotentials and Bl\"ochl's projector augmented wave (PAW) method is derived. It is shown that the total energy functional for US pseudopotentials can be obtained by linearization of two terms in a slightly modified PAW total energy functional. The Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional. A simple way to implement the PAW method in existing plane-wave codes supporting US pseudopotentials is pointed out. In addition, critical tests are presented to compare the accuracy and efficiency of the PAW and the US pseudopotential method with relaxed core all electron methods. These tests include small molecules $({\mathrm{H}}_{2}{,\mathrm{}\mathrm{H}}_{2}{\mathrm{O},\mathrm{}\mathrm{Li}}_{2}{,\mathrm{}\mathrm{N}}_{2}{,\mathrm{}\mathrm{F}}_{2}{,\mathrm{}\mathrm{BF}}_{3}{,\mathrm{}\mathrm{SiF}}_{4})$ and several bulk systems (diamond, Si, V, Li, Ca, ${\mathrm{CaF}}_{2},$ Fe, Co, Ni). Particular attention is paid to the bulk properties and magnetic energies of Fe, Co, and Ni.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the title compound is hydrothermally prepared from aqueous solutions of stoichiometric amounts of stochastic amounts of Cu(NO3)2 and Na2HPO4 (pH 7, autoclave, 120 °C, 6 h).
Abstract: Microcrystals of the title compound are hydrothermally prepared from aqueous solutions of stoichiometric amounts of Cu(NO3)2 and Na2HPO4 (pH 7, autoclave, 120 °C, 6 h).

221 citations

Journal ArticleDOI
TL;DR: First-principles studies of the optical absorbance of the group IV honeycomb crystals graphene, silicene, germanene, and tinene are presented, modified with a spin-orbit-induced transparency region and an increase of the absorbance at the fundamental absorption edge.
Abstract: We present first-principles studies of the optical absorbance of the group IV honeycomb crystals graphene, silicene, germanene, and tinene. We account for many-body effects on the optical properties by using the non-local hybrid functional HSE06. The optical absorption peaks are blueshifted due to quasiparticle corrections, while the influence on the low-frequency absorbance remains unchanged and reduces to a universal value related to the Sommerfeld fine structure constant. At the Dirac points spin-orbit interaction opens fundamental band gaps; parabolic bands with a very small effective mass emerge. Consequently, the low-frequency absorbance is modified with a spin-orbit-induced transparency region and an increase of the absorbance at the fundamental absorption edge.

221 citations

Journal ArticleDOI
TL;DR: In this article, a study of the adsorption of CO on late 4d and 5d transition metal (111) surfaces (Ru, Rh, Pd, Ag, Os, Ir and Pt) is presented.
Abstract: A study of the adsorption of CO on late 4d and 5d transition metal (111) surfaces (Ru, Rh, Pd, Ag, Os, Ir and Pt) considering atop and hollow site adsorption is presented. The applied functionals include the gradient-corrected Perdew–Burke–Ernzerhof (PBE) and Becke–Lee–Yang–Parr (BLYP) functionals, and the corresponding hybrid Hartree–Fock density functionals HSE and B3LYP. We find that PBE-based hybrid functionals (specifically HSE) yield, with the exception of Pt, the correct site order on all considered metals, but they also considerably overestimate the adsorption energies compared to experiment. On the other hand, the semi-local BLYP functional and the corresponding hybrid functional B3LYP yield very satisfactory adsorption energies and the correct adsorption site for all surfaces. We are thus faced with a Procrustean problem: the B3LYP and BLYP functionals seem to be the overall best choice for describing adsorption on metal surfaces, but they simultaneously fail to account well for the properties of the metal, vastly overestimating the equilibrium volume and underestimating the atomization energies. Setting out from these observations, general conclusions are drawn on the relative merits and drawbacks of various semi-local and hybrid functionals. The discussion includes a revised version of the PBE functional specifically optimized for bulk properties and surface energies (PBEsol), a revised version of the PBE functional specifically optimized to predict accurate adsorption energies (rPBE), as well as the aforementioned BLYP functional. We conclude that no semi-local functional is capable of describing all aspects properly, and including non-local exchange also only improves some but worsens other properties.

221 citations

Journal ArticleDOI
TL;DR: In this paper, the whole reaction network of dry reformation on both flat and stepped nickel catalysts as well as nickel carbide (flat: Ni 3 C(0, 0, 1); stepped: Ni3 C(1, 1, 1), was investigated using density functional theory calculations, and the overall reaction energy profiles in the free energy landscape were obtained, and kinetic analyses were utilized to evaluate the activity of the four surfaces.

221 citations

Journal ArticleDOI
TL;DR: This study provides an excitonic prospective on photocatalytic processes, and paves a new approach for pursuing systems with giant electron-hole interactions, by taking bismuth oxyhalide as examples.
Abstract: Numerous efforts have been devoted to understanding the excitation processes of photocatalysts, whereas the potential Coulomb interactions between photogenerated electrons and holes have been long ignored. Once these interactions are considered, excitonic effects will arise that undoubtedly influence the sunlight-driven catalytic processes. Herein, by taking bismuth oxyhalide as examples, we proposed that giant electron–hole interactions would be expected in confined layered structures, and excitons would be the dominating photoexcited species. Photocatalytic molecular oxygen activation tests were performed as a proof of concept, where singlet oxygen generation via energy transfer process was brightened. Further experiments verify that structural confinement is curial to the giant excitonic effects, where the involved catalytic process could be readily regulated via facet-engineering, thus enabling diverse reactive oxygen species generation. This study not only provides an excitonic prospective on photoca...

221 citations

References
More filters
Book
31 Dec 1993
TL;DR: The linearized augmented planewave (LAPW) method has emerged as the standard by which density functional calculations for transition metal and rare-earth containing materials are judged.
Abstract: With its extreme accuracy and reasonable computational efficiency, the linearized augmented planewave (LAPW) method has emerged as the standard by which density functional calculations for transition metal and rare-earth containing materials are judged. This volume presents a thorough and self-conta

1,150 citations