scispace - formally typeset
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

Reads0
Chats0
TLDR
In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Abstract
The formal relationship between ultrasoft (US) Vanderbilt-type pseudopotentials and Bl\"ochl's projector augmented wave (PAW) method is derived. It is shown that the total energy functional for US pseudopotentials can be obtained by linearization of two terms in a slightly modified PAW total energy functional. The Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional. A simple way to implement the PAW method in existing plane-wave codes supporting US pseudopotentials is pointed out. In addition, critical tests are presented to compare the accuracy and efficiency of the PAW and the US pseudopotential method with relaxed core all electron methods. These tests include small molecules $({\mathrm{H}}_{2}{,\mathrm{}\mathrm{H}}_{2}{\mathrm{O},\mathrm{}\mathrm{Li}}_{2}{,\mathrm{}\mathrm{N}}_{2}{,\mathrm{}\mathrm{F}}_{2}{,\mathrm{}\mathrm{BF}}_{3}{,\mathrm{}\mathrm{SiF}}_{4})$ and several bulk systems (diamond, Si, V, Li, Ca, ${\mathrm{CaF}}_{2},$ Fe, Co, Ni). Particular attention is paid to the bulk properties and magnetic energies of Fe, Co, and Ni.

read more

Citations
More filters
Journal ArticleDOI

Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry

TL;DR: It is shown that covalent aryl diazonium functionalization suppresses the chemical degradation of exfoliated BP even after three weeks of ambient exposure, and thus improves its prospects for nanoelectronic applications.
Journal ArticleDOI

Ideal pure shear strength of aluminum and copper.

TL;DR: By a comparative analysis of ion relaxations and valence charge redistributions in aluminum and copper, this work arrives at contrasting descriptions of bonding characteristics in these two metals that can explain their relative strength and deformation behavior.
Journal ArticleDOI

Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights

TL;DR: In this paper, the structural and electronic properties of Cu2ZnSnS4 and Cu2znSnSe4 were studied using first-principles calculations and it was shown that the low energy crystal structure obeys the octet rule and is the kesterite structure.
Journal ArticleDOI

Transparent dense sodium.

TL;DR: Experimental observations of a pressure-induced transformation of Na into an optically transparent phase at ∼200 GPa are reported, attributing the emergence of this dense insulating state not to atom pairing, but to p–d hybridizations of valence electrons and their repulsion by core electrons into the lattice interstices.
References
More filters
Book

Planewaves, Pseudopotentials, and the LAPW Method

TL;DR: The linearized augmented planewave (LAPW) method has emerged as the standard by which density functional calculations for transition metal and rare-earth containing materials are judged.
Related Papers (5)