scispace - formally typeset
Search or ask a question
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

15 Jan 1999-Physical Review B (American Physical Society)-Vol. 59, Iss: 3, pp 1758-1775
TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Abstract: The formal relationship between ultrasoft (US) Vanderbilt-type pseudopotentials and Bl\"ochl's projector augmented wave (PAW) method is derived. It is shown that the total energy functional for US pseudopotentials can be obtained by linearization of two terms in a slightly modified PAW total energy functional. The Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional. A simple way to implement the PAW method in existing plane-wave codes supporting US pseudopotentials is pointed out. In addition, critical tests are presented to compare the accuracy and efficiency of the PAW and the US pseudopotential method with relaxed core all electron methods. These tests include small molecules $({\mathrm{H}}_{2}{,\mathrm{}\mathrm{H}}_{2}{\mathrm{O},\mathrm{}\mathrm{Li}}_{2}{,\mathrm{}\mathrm{N}}_{2}{,\mathrm{}\mathrm{F}}_{2}{,\mathrm{}\mathrm{BF}}_{3}{,\mathrm{}\mathrm{SiF}}_{4})$ and several bulk systems (diamond, Si, V, Li, Ca, ${\mathrm{CaF}}_{2},$ Fe, Co, Ni). Particular attention is paid to the bulk properties and magnetic energies of Fe, Co, and Ni.
Citations
More filters
Journal ArticleDOI
17 Apr 2014-Nature
TL;DR: An unprecedented ZT of 2.6 ± 0.3 at 923 K is reported in SnSe single crystals measured along the b axis of the room-temperature orthorhombic unit cell, which highlights alternative strategies to nanostructuring for achieving high thermoelectric performance.
Abstract: The thermoelectric effect enables direct and reversible conversion between thermal and electrical energy, and provides a viable route for power generation from waste heat The efficiency of thermoelectric materials is dictated by the dimensionless figure of merit, ZT (where Z is the figure of merit and T is absolute temperature), which governs the Carnot efficiency for heat conversion Enhancements above the generally high threshold value of 25 have important implications for commercial deployment, especially for compounds free of Pb and Te Here we report an unprecedented ZT of 26 ± 03 at 923 K, realized in SnSe single crystals measured along the b axis of the room-temperature orthorhombic unit cell This material also shows a high ZT of 23 ± 03 along the c axis but a significantly reduced ZT of 08 ± 02 along the a axis We attribute the remarkably high ZT along the b axis to the intrinsically ultralow lattice thermal conductivity in SnSe The layered structure of SnSe derives from a distorted rock-salt structure, and features anomalously high Gruneisen parameters, which reflect the anharmonic and anisotropic bonding We attribute the exceptionally low lattice thermal conductivity (023 ± 003 W m(-1) K(-1) at 973 K) in SnSe to the anharmonicity These findings highlight alternative strategies to nanostructuring for achieving high thermoelectric performance

3,823 citations

Journal ArticleDOI
29 May 2008-Nature
TL;DR: This work synthesized uniform anatase TiO2 single crystals with a high percentage (47 per cent) of {001} facets using hydrofluoric acid as a morphology controlling agent and demonstrates that for fluorine-terminated surfaces this relative stability is reversed.
Abstract: [Yang, Hua Gui; Sun, Cheng Hua; Qiao, Shi Zhang; Liu, Gang; Smith, Sean Campbell; Lu, Gao Qing] Univ Queensland, ARC Ctr Excellence Funct Nanomat, Sch Engn, Brisbane, Qld 4072, Australia. [Yang, Hua Gui; Sun, Cheng Hua; Qiao, Shi Zhang; Liu, Gang; Smith, Sean Campbell; Lu, Gao Qing] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Ctr Computat Mol Sci, Brisbane, Qld 4072, Australia. [Zou, Jin] Univ Queensland, Ctr Microscopy & Microanal, Brisbane, Qld 4072, Australia. [Zou, Jin] Univ Queensland, Sch Engn, Brisbane, Qld 4072, Australia. [Liu, Gang; Cheng, Hui Ming] Chinese Acad Sci, Met Res Inst, Shenyang Natl Lab Mat sci, Shenyang 110016, Peoples R China.;Lu, GQ (reprint author), Univ Queensland, ARC Ctr Excellence Funct Nanomat, Sch Engn, Brisbane, Qld 4072, Australia;s.qiao@uq.edu.au maxlu@uq.edu.au

3,656 citations


Cites methods from "From ultrasoft pseudopotentials to ..."

  • ...[3] Kresse, G....

    [...]

  • ...All calculations have been carried out using the density functional theory (DFT) within the generalized-gradient approximation (GGA) [1], with the exchange-correlation functional of Perdew-Burke-Ernzerhof (PBE) [2, 3]....

    [...]

Journal ArticleDOI
Jingsi Qiao1, Xianghua Kong1, Zhixin Hu1, Feng Yang1, Wei Ji1 
TL;DR: A detailed theoretical investigation of the atomic and electronic structure of few-layer black phosphorus (BP) is presented to predict its electrical and optical properties, finding that the mobilities are hole-dominated, rather high and highly anisotropic.
Abstract: Two-dimensional crystals are emerging materials for nanoelectronics. Development of the field requires candidate systems with both a high carrier mobility and, in contrast to graphene, a sufficiently large electronic bandgap. Here we present a detailed theoretical investigation of the atomic and electronic structure of few-layer black phosphorus (BP) to predict its electrical and optical properties. This system has a direct bandgap, tunable from 1.51 eV for a monolayer to 0.59 eV for a five-layer sample. We predict that the mobilities are hole-dominated, rather high and highly anisotropic. The monolayer is exceptional in having an extremely high hole mobility (of order 10,000 cm(2) V(-1) s(-1)) and anomalous elastic properties which reverse the anisotropy. Light absorption spectra indicate linear dichroism between perpendicular in-plane directions, which allows optical determination of the crystalline orientation and optical activation of the anisotropic transport properties. These results make few-layer BP a promising candidate for future electronics.

3,622 citations

Posted Content
TL;DR: In this article, the authors demonstrate phonon properties with fundamental equations and show examples how the phonon calculations are applied in materials science, and demonstrate the importance of first principles phonon calculation in dynamical behaviors and thermal properties.
Abstract: Phonon plays essential roles in dynamical behaviors and thermal properties, which are central topics in fundamental issues of materials science. The importance of first principles phonon calculations cannot be overly emphasized. Phonopy is an open source code for such calculations launched by the present authors, which has been world-widely used. Here we demonstrate phonon properties with fundamental equations and show examples how the phonon calculations are applied in materials science.

2,993 citations


Cites methods from "From ultrasoft pseudopotentials to ..."

  • ...jp (Isao Tanaka) framework of DFT within the generalized gradient approximation in the Perdew-Burke-Ernzerhof form [18] as implemented in the VASP code [19, 20, 21]....

    [...]

Journal ArticleDOI
30 Jan 2015-Science
TL;DR: A solution-based hot-casting technique is demonstrated to grow continuous, pinhole-free thin films of organometallic perovskites with millimeter-scale crystalline grains that are applicable to several other material systems plagued by polydispersity, defects, and grain boundary recombination in solution-processed thin films.
Abstract: State-of-the-art photovoltaics use high-purity, large-area, wafer-scale single-crystalline semiconductors grown by sophisticated, high-temperature crystal growth processes. We demonstrate a solution-based hot-casting technique to grow continuous, pinhole-free thin films of organometallic perovskites with millimeter-scale crystalline grains. We fabricated planar solar cells with efficiencies approaching 18%, with little cell-to-cell variability. The devices show hysteresis-free photovoltaic response, which had been a fundamental bottleneck for the stable operation of perovskite devices. Characterization and modeling attribute the improved performance to reduced bulk defects and improved charge carrier mobility in large-grain devices. We anticipate that this technique will lead the field toward synthesis of wafer-scale crystalline perovskites, necessary for the fabrication of high-efficiency solar cells, and will be applicable to several other material systems plagued by polydispersity, defects, and grain boundary recombination in solution-processed thin films.

2,960 citations

References
More filters
Book
31 Dec 1993
TL;DR: The linearized augmented planewave (LAPW) method has emerged as the standard by which density functional calculations for transition metal and rare-earth containing materials are judged.
Abstract: With its extreme accuracy and reasonable computational efficiency, the linearized augmented planewave (LAPW) method has emerged as the standard by which density functional calculations for transition metal and rare-earth containing materials are judged. This volume presents a thorough and self-conta

1,150 citations