scispace - formally typeset
Search or ask a question
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

15 Jan 1999-Physical Review B (American Physical Society)-Vol. 59, Iss: 3, pp 1758-1775
TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Abstract: The formal relationship between ultrasoft (US) Vanderbilt-type pseudopotentials and Bl\"ochl's projector augmented wave (PAW) method is derived. It is shown that the total energy functional for US pseudopotentials can be obtained by linearization of two terms in a slightly modified PAW total energy functional. The Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional. A simple way to implement the PAW method in existing plane-wave codes supporting US pseudopotentials is pointed out. In addition, critical tests are presented to compare the accuracy and efficiency of the PAW and the US pseudopotential method with relaxed core all electron methods. These tests include small molecules $({\mathrm{H}}_{2}{,\mathrm{}\mathrm{H}}_{2}{\mathrm{O},\mathrm{}\mathrm{Li}}_{2}{,\mathrm{}\mathrm{N}}_{2}{,\mathrm{}\mathrm{F}}_{2}{,\mathrm{}\mathrm{BF}}_{3}{,\mathrm{}\mathrm{SiF}}_{4})$ and several bulk systems (diamond, Si, V, Li, Ca, ${\mathrm{CaF}}_{2},$ Fe, Co, Ni). Particular attention is paid to the bulk properties and magnetic energies of Fe, Co, and Ni.
Citations
More filters
Journal ArticleDOI
18 Dec 2015-Science
TL;DR: The fundamental relation between the anionic redox process and the evolution of the O-O bonding in layered oxides is established, and the design of safe and long-lasting batteries requires an understanding of the physical and chemical changes that occur during redox processes.
Abstract: Lithium-ion (Li-ion) batteries that rely on cationic redox reactions are the primary energy source for portable electronics. One pathway toward greater energy density is through the use of Li-rich layered oxides. The capacity of this class of materials (>270 milliampere hours per gram) has been shown to be nested in anionic redox reactions, which are thought to form peroxo-like species. However, the oxygen-oxygen (O-O) bonding pattern has not been observed in previous studies, nor has there been a satisfactory explanation for the irreversible changes that occur during first delithiation. By using Li2IrO3 as a model compound, we visualize the O-O dimers via transmission electron microscopy and neutron diffraction. Our findings establish the fundamental relation between the anionic redox process and the evolution of the O-O bonding in layered oxides.

608 citations

Journal ArticleDOI
TL;DR: Various factors such as NO2 concentrations, annealing temperature, ZnO morphologies and particle sizes, relative humidity, operating temperatures which are affecting the NO2 gas sensing properties are discussed in this review.
Abstract: Because of the interesting and multifunctional properties, recently, ZnO nanostructures are considered as excellent material for fabrication of highly sensitive and selective gas sensors. Thus, ZnO nanomaterials are widely used to fabricate efficient gas sensors for the detection of various hazardous and toxic gases. The presented review article is focusing on the recent developments of NO2 gas sensors based on ZnO nanomaterials. The review presents the general introduction of some metal oxide nanomaterials for gas sensing application and finally focusing on the structure of ZnO and its gas sensing mechanisms. Basic gas sensing characteristics such as gas response, response time, recovery time, selectivity, detection limit, stability and recyclability, etc are also discussed in this article. Further, the utilization of various ZnO nanomaterials such as nanorods, nanowires, nano-micro flowers, quantum dots, thin films and nanosheets, etc for the fabrication of NO2 gas sensors are also presented. Moreover, various factors such as NO2 concentrations, annealing temperature, ZnO morphologies and particle sizes, relative humidity, operating temperatures which are affecting the NO2 gas sensing properties are discussed in this review. Finally, the review article is concluded and future directions are presented.

607 citations

Journal ArticleDOI
TL;DR: In this paper, the ground state energies of all known compounds in the quaternary Li−Fe−P−O2 system were calculated using the generalized gradient approximation (GGA) approximation to density functional theory (DFT) and the DFT+U extension to it.
Abstract: We present an efficient way to calculate the phase diagram of the quaternary Li−Fe−P−O2 system using ab initio methods. The ground-state energies of all known compounds in the Li−Fe−P−O2 system were calculated using the generalized gradient approximation (GGA) approximation to density functional theory (DFT) and the DFT+U extension to it. Considering only the entropy of gaseous phases, the phase diagram was constructed as a function of oxidation conditions, with the oxygen chemical potential, μO2, capturing both temperature and oxygen partial pressure dependence. A modified Ellingham diagram was also developed by incorporating the experimental entropy data of gaseous phases. The phase diagram shows LiFePO4 to be stable over a wide range of oxidation environments, being the first Fe2+-containing phase to appear upon reduction at μO2 = −11.52 eV and the last of the Fe-containing phosphates to be reduced at μO2 = −16.74 eV. Lower μO2 represents more reducing conditions, which generally correspond to higher t...

606 citations

Posted Content
TL;DR: The monolayer film is composed of coalescing single islands with limited numbers of lattice orientation due to an epitaxial growth mechanism, and local potential mapping along channels in field-effect transistors shows that the single-crystal MoS2 grains in the film are well connected, with interfaces that do not degrade the electrical conductivity.
Abstract: Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics and energy harvesting. Large-area growth methods are needed to open the way to the applications. While significant progress to this goal was made, control over lattice orientation during growth still remains a challenge. This is needed in order to minimize or even avoid the formation of grain boundaries which can be detrimental to electrical, optical and mechanical properties of MoS2 and other 2D semiconductors. Here, we report on the uniform growth of high-quality centimeter-scale continuous monolayer MoS2 with control over lattice orientation. Using transmission electron microscopy we show that the monolayer film is composed of coalescing single islands that share a predominant lattice orientation due to an epitaxial growth mechanism. Raman and photoluminescence spectra confirm the high quality of the grown material. Optical absorbance spectra acquired over large areas show new features in the high-energy part of the spectrum, indicating that MoS2 could also be interesting for harvesting this region of the solar spectrum and fabrication of UV-sensitive photodetectors. Even though the interaction between the growth substrate and MoS2 is strong enough to induce lattice alignment, we can easily transfer the grown material and fabricate field-effect transistors on SiO2 substrates showing mobility superior to the exfoliated material.

604 citations

Journal ArticleDOI
24 Sep 2010-Science
TL;DR: Alkali ions added in small amounts activate platinum adsorbed on alumina or silica for the low-temperature water-gas shift (WGS) reaction (H2O + CO → H2 + CO2) used for producing H2.
Abstract: We report that alkali ions (sodium or potassium) added in small amounts activate platinum adsorbed on alumina or silica for the low-temperature water-gas shift (WGS) reaction (H 2 O + CO → H 2 + CO 2 ) used for producing H 2 . The alkali ion–associated surface OH groups are activated by CO at low temperatures (~100°C) in the presence of atomically dispersed platinum. Both experimental evidence and density functional theory calculations suggest that a partially oxidized Pt-alkali-O x (OH) y species is the active site for the low-temperature Pt-catalyzed WGS reaction. These findings are useful for the design of highly active and stable WGS catalysts that contain only trace amounts of a precious metal without the need for a reducible oxide support such as ceria.

603 citations

References
More filters
Book
31 Dec 1993
TL;DR: The linearized augmented planewave (LAPW) method has emerged as the standard by which density functional calculations for transition metal and rare-earth containing materials are judged.
Abstract: With its extreme accuracy and reasonable computational efficiency, the linearized augmented planewave (LAPW) method has emerged as the standard by which density functional calculations for transition metal and rare-earth containing materials are judged. This volume presents a thorough and self-conta

1,150 citations