scispace - formally typeset
Search or ask a question
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

15 Jan 1999-Physical Review B (American Physical Society)-Vol. 59, Iss: 3, pp 1758-1775
TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Abstract: The formal relationship between ultrasoft (US) Vanderbilt-type pseudopotentials and Bl\"ochl's projector augmented wave (PAW) method is derived. It is shown that the total energy functional for US pseudopotentials can be obtained by linearization of two terms in a slightly modified PAW total energy functional. The Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional. A simple way to implement the PAW method in existing plane-wave codes supporting US pseudopotentials is pointed out. In addition, critical tests are presented to compare the accuracy and efficiency of the PAW and the US pseudopotential method with relaxed core all electron methods. These tests include small molecules $({\mathrm{H}}_{2}{,\mathrm{}\mathrm{H}}_{2}{\mathrm{O},\mathrm{}\mathrm{Li}}_{2}{,\mathrm{}\mathrm{N}}_{2}{,\mathrm{}\mathrm{F}}_{2}{,\mathrm{}\mathrm{BF}}_{3}{,\mathrm{}\mathrm{SiF}}_{4})$ and several bulk systems (diamond, Si, V, Li, Ca, ${\mathrm{CaF}}_{2},$ Fe, Co, Ni). Particular attention is paid to the bulk properties and magnetic energies of Fe, Co, and Ni.
Citations
More filters
Journal ArticleDOI
TL;DR: The UCLA team has successfully passivated perovskite film by controlling the film growth with functional polymers as additive, which opens up a new class of chemical additives for improving perovSkite performance and should pave the way toward improving perOVskite solar cells for high efficiency and stability.
Abstract: The solution processing of polycrystalline perovskite films introduces trap states that can adversely affect their optoelectronic properties. Motivated by the use of small-molecule surfactants to improve the optoelectronic performance of perovskites, we demonstrate the use of polymers with coordinating groups to improve the performance of solution-processed semiconductor films. The use of these polymer modifiers results in a marked change in the electronic properties of the films, as measured by both carrier dynamics and overall device performance. The devices grown with the polymer poly(4-vinylpyridine) (PVP) show significantly enhanced power conversion efficiency from 16.9 ± 0.7% to 18.8 ± 0.8% (champion efficiency, 20.2%) from a reverse scan and stabilized champion efficiency from 17.5 to 19.1% [under a bias of 0.94 V and AM (air mass) 1.5-G, 1-sun illumination over 30 min] compared to controls without any passivation. Treating the perovskite film with PVP enables a VOC of up to 1.16 V, which is among the best reported for a CH3NH3PbI3 perovskite solar cell and one of the lowest voltage deficits reported for any perovskite to date. In addition, perovskite solar cells treated with PVP show a long shelf lifetime of up to 90 days (retaining 85% of the initial efficiency) and increased by a factor of more than 20 compared to those without any polymer (degrading to 85% after ~4 days). Our work opens up a new class of chemical additives for improving perovskite performance and should pave the way toward improving perovskite solar cells for high efficiency and stability.

539 citations


Cites methods from "From ultrasoft pseudopotentials to ..."

  • ...DFT simulation Our first-principles calculations were carried out using the Vienna ab initio simulation package (VASP) (67), a DFT approach using the projector-augmented wave method (68, 69)....

    [...]

Journal ArticleDOI
01 Feb 2019
TL;DR: Wei et al. as discussed by the authors used operando X-ray absorption spectroscopy on a uniform cobalt single-site catalyst to identify the dynamic structure of catalytically active sites under alkaline hydrogen evolution reaction (HER).
Abstract: Monitoring atomic and electronic structure changes on active sites under realistic working conditions is crucial for the rational design of efficient electrocatalysts. Identification of the active structure during the alkaline hydrogen evolution reaction (HER), which is critical to industrial water–alkali electrolysers, remains elusive and is a field of intense research. Here, by virtue of operando X-ray absorption spectroscopy on a uniform cobalt single-site catalyst, we report the atomic-level identification of the dynamic structure of catalytically active sites under alkaline HER. Our results reveal the formation of a high-valence HO–Co1–N2 moiety by the binding between isolated Co1–N4 sites with electrolyte hydroxide, and further unravel the preferred water adsorption reaction intermediate H2O–(HO–Co1–N2). Theoretical simulations rationalize this structural evolution and demonstrate that the highly oxidized Co sites are responsible for the catalytic performance. These findings suggest the electrochemical susceptibility of active sites, providing a coordination-engineered strategy for the advance of single-site catalysis. Carbon-based single-atom catalysts usually rely on nitrogen co-doping to stabilize the single metal atoms as metal–N4 moieties. Now, Wei, Yao and colleagues make use of operando techniques to show that under alkaline hydrogen evolution reaction conditions the Co–N4 active site undergoes structural distortion to a HO–Co–N2 configuration.

538 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of carbon on the electrical and optical properties of GaN were investigated using hybrid functional calculations, and it was shown that carbon substituting for N (CN) has an ionization energy of 0.90 eV.
Abstract: Using hybrid functional calculations we investigate the effects of carbon on the electrical and optical properties of GaN. In contrast to the currently accepted view that C substituting for N (CN) is a shallow acceptor, we find that CN has an ionization energy of 0.90 eV. Our calculated absorption and emission lines also indicate that CN is a likely source for the yellow luminescence that is frequently observed in GaN, solving the longstanding puzzle of the nature of the C-related defect involved in yellow emission. Our results suggest that previous experimental data, analyzed under the assumption that CN acts as a shallow acceptor, should be re-examined.

536 citations

Journal ArticleDOI
TL;DR: The experimental results show that at a finite Pb composition above the topological inversion phase transition, the surface exhibits even number of spin-polarized Dirac cone states revealing mirror-protected topological order distinct from that observed in Bi(1-x)Sb(x).
Abstract: A topological insulator protected by time-reversal symmetry is realized via spin-orbit interaction-driven band inversion. The topological phase in the Bi(1-x)Sb(x) system is due to an odd number of band inversions. A related spin-orbit system, the Pb(1-x)Sn(x)Te, has long been known to contain an even number of inversions based on band theory. Here we experimentally investigate the possibility of a mirror symmetry-protected topological crystalline insulator phase in the Pb(1-x)Sn(x)Te class of materials that has been theoretically predicted to exist in its end compound SnTe. Our experimental results show that at a finite Pb composition above the topological inversion phase transition, the surface exhibits even number of spin-polarized Dirac cone states revealing mirror-protected topological order distinct from that observed in Bi(1-x)Sb(x). Our observation of the spin-polarized Dirac surface states in the inverted Pb(1-x)Sn(x)Te and their absence in the non-inverted compounds related via a topological phase transition provide the experimental groundwork for opening the research on novel topological order in quantum devices.

536 citations

Journal ArticleDOI
TL;DR: Positron annihilation spectroscopy is particularly suitable for studying vacancy-type defects in semiconductors and combining state-of-the-art experimental and theoretical methods allows for detailed identification of the defects and their chemical surroundings as mentioned in this paper.
Abstract: Positron annihilation spectroscopy is particularly suitable for studying vacancy-type defects in semiconductors. Combining state-of-the-art experimental and theoretical methods allows for detailed identification of the defects and their chemical surroundings. Also charge states and defect levels in the band gap are accessible. In this review the main experimental and theoretical analysis techniques are described. The usage of these methods is illustrated through examples in technologically important elemental and compound semiconductors. Future challenges include the analysis of noncrystalline materials and of transient defect-related phenomena.

534 citations

References
More filters
Book
31 Dec 1993
TL;DR: The linearized augmented planewave (LAPW) method has emerged as the standard by which density functional calculations for transition metal and rare-earth containing materials are judged.
Abstract: With its extreme accuracy and reasonable computational efficiency, the linearized augmented planewave (LAPW) method has emerged as the standard by which density functional calculations for transition metal and rare-earth containing materials are judged. This volume presents a thorough and self-conta

1,150 citations