scispace - formally typeset
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

Reads0
Chats0
TLDR
In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Abstract
The formal relationship between ultrasoft (US) Vanderbilt-type pseudopotentials and Bl\"ochl's projector augmented wave (PAW) method is derived. It is shown that the total energy functional for US pseudopotentials can be obtained by linearization of two terms in a slightly modified PAW total energy functional. The Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional. A simple way to implement the PAW method in existing plane-wave codes supporting US pseudopotentials is pointed out. In addition, critical tests are presented to compare the accuracy and efficiency of the PAW and the US pseudopotential method with relaxed core all electron methods. These tests include small molecules $({\mathrm{H}}_{2}{,\mathrm{}\mathrm{H}}_{2}{\mathrm{O},\mathrm{}\mathrm{Li}}_{2}{,\mathrm{}\mathrm{N}}_{2}{,\mathrm{}\mathrm{F}}_{2}{,\mathrm{}\mathrm{BF}}_{3}{,\mathrm{}\mathrm{SiF}}_{4})$ and several bulk systems (diamond, Si, V, Li, Ca, ${\mathrm{CaF}}_{2},$ Fe, Co, Ni). Particular attention is paid to the bulk properties and magnetic energies of Fe, Co, and Ni.

read more

Citations
More filters
Journal ArticleDOI

Structural evolution during the reduction of chemically derived graphene oxide

TL;DR: The chemical changes of oxygen-containing functional groups on the annealing of graphene oxide are elucidated and the simulations reveal the formation of highly stable carbonyl and ether groups that hinder its complete reduction to graphene.
Posted Content

Crystal structure prediction using ab initio evolutionary techniques: principles and applications

TL;DR: In this paper, an efficient and reliable methodology for crystal structure prediction, merging ab initio total energy calculations and a specifically devised evolutionary algorithm, was developed, which allows one to predict the most stable crystal structure and a number of low-energy metastable structures for a given compound at any P-T conditions without requiring any experimental input.
Journal ArticleDOI

WannierTools: An open-source software package for novel topological materials

TL;DR: This code works in the tight-binding framework, which can be generated by another software package Wannier90 Mostofi et al. (2008), and can help to classify the topological phase of a given materials by calculating the Wilson loop, and get the surface state spectrum.
Journal ArticleDOI

LOBSTER: A tool to extract chemical bonding from plane-wave based DFT

TL;DR: The computer program LOBSTER (Local Orbital Basis Suite Towards Electronic‐Structure Reconstruction) enables chemical‐bonding analysis based on periodic plane‐wave density‐functional theory output and is applicable to a wide range of first‐principles simulations in solid‐state and materials chemistry.
Journal ArticleDOI

Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study

TL;DR: In this article, the authors provide an overview of plane-wave pseudopotential density functional theory (DFT) methods applicable to studies of large periodic systems and present a number of algorithmic implementations, including ultrasoft pseudopotentials, efficient iterative schemes for solving the one-electron DFT equations, and computationally efficient codes for massively parallel computers.
References
More filters
Book

Planewaves, Pseudopotentials, and the LAPW Method

TL;DR: The linearized augmented planewave (LAPW) method has emerged as the standard by which density functional calculations for transition metal and rare-earth containing materials are judged.
Related Papers (5)