scispace - formally typeset
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

Reads0
Chats0
TLDR
In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Abstract
The formal relationship between ultrasoft (US) Vanderbilt-type pseudopotentials and Bl\"ochl's projector augmented wave (PAW) method is derived. It is shown that the total energy functional for US pseudopotentials can be obtained by linearization of two terms in a slightly modified PAW total energy functional. The Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional. A simple way to implement the PAW method in existing plane-wave codes supporting US pseudopotentials is pointed out. In addition, critical tests are presented to compare the accuracy and efficiency of the PAW and the US pseudopotential method with relaxed core all electron methods. These tests include small molecules $({\mathrm{H}}_{2}{,\mathrm{}\mathrm{H}}_{2}{\mathrm{O},\mathrm{}\mathrm{Li}}_{2}{,\mathrm{}\mathrm{N}}_{2}{,\mathrm{}\mathrm{F}}_{2}{,\mathrm{}\mathrm{BF}}_{3}{,\mathrm{}\mathrm{SiF}}_{4})$ and several bulk systems (diamond, Si, V, Li, Ca, ${\mathrm{CaF}}_{2},$ Fe, Co, Ni). Particular attention is paid to the bulk properties and magnetic energies of Fe, Co, and Ni.

read more

Citations
More filters
Journal ArticleDOI

Recent developments in the PySCF program package

TL;DR: PySCF as mentioned in this paper is a Python-based general-purpose electronic structure platform that supports first-principles simulations of molecules and solids as well as accelerates the development of new methodology and complex computational workflows.
Journal ArticleDOI

Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes

TL;DR: In this paper, a metal-organic framework-derived nitrogen-doped nanoporous carbon was used as an electrocatalyst for the nitrogen reduction reaction (NRR) by using renewable electricity.
Journal ArticleDOI

Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals

TL;DR: The average value of the figure of merit ZT, of more than 1.17, is measured from 300 K to 800 K along the crystallographic b-axis of 3 at% Na-doped SnSe, with the maximum ZT reaching a value of 2 at 800 K as mentioned in this paper.
Journal ArticleDOI

Weak Van der Waals Stacking, Wide-Range Band Gap, and Raman Study on Ultrathin Layers of Metal Phosphorus Trichalcogenides.

TL;DR: The monolayers used for building of heterostructures by van der Waals stacking could be considered as the candidates for artificial 2D materials with unusual ferroelectric and magnetic properties.
Journal ArticleDOI

Germanene: the germanium analogue of graphene.

TL;DR: A topical review of the various methods to synthesize germanene is addressed, a brief overview of the key results that have been obtained by density functional theory calculations are provided and the potential of germanenes for future applications is discussed.
References
More filters
Book

Planewaves, Pseudopotentials, and the LAPW Method

TL;DR: The linearized augmented planewave (LAPW) method has emerged as the standard by which density functional calculations for transition metal and rare-earth containing materials are judged.
Related Papers (5)