scispace - formally typeset
Search or ask a question
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

15 Jan 1999-Physical Review B (American Physical Society)-Vol. 59, Iss: 3, pp 1758-1775
TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Abstract: The formal relationship between ultrasoft (US) Vanderbilt-type pseudopotentials and Bl\"ochl's projector augmented wave (PAW) method is derived. It is shown that the total energy functional for US pseudopotentials can be obtained by linearization of two terms in a slightly modified PAW total energy functional. The Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional. A simple way to implement the PAW method in existing plane-wave codes supporting US pseudopotentials is pointed out. In addition, critical tests are presented to compare the accuracy and efficiency of the PAW and the US pseudopotential method with relaxed core all electron methods. These tests include small molecules $({\mathrm{H}}_{2}{,\mathrm{}\mathrm{H}}_{2}{\mathrm{O},\mathrm{}\mathrm{Li}}_{2}{,\mathrm{}\mathrm{N}}_{2}{,\mathrm{}\mathrm{F}}_{2}{,\mathrm{}\mathrm{BF}}_{3}{,\mathrm{}\mathrm{SiF}}_{4})$ and several bulk systems (diamond, Si, V, Li, Ca, ${\mathrm{CaF}}_{2},$ Fe, Co, Ni). Particular attention is paid to the bulk properties and magnetic energies of Fe, Co, and Ni.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the spin-polarized density functional theory has been used to study the properties of vacancies in a graphene sheet and in single-walled carbon nanotubes (SWNTs).
Abstract: Spin-polarized density functional theory has been used to study the properties of vacancies in a graphene sheet and in single-walled carbon nanotubes (SWNTs). For graphene, we find that the vacancies are magnetic and the symmetry of the sheet is broken by the distortion of an atom next to the vacancy site. We also studied vacancies in four armchair SWNTs from (3,3) to (6,6) and six zigzag SWNTs from (5,0) to (10,0). Our calculations demonstrate that vacancies can change the electronic structure of SWNTs, converting some metallic nanotubes to semiconductors and vice versa. Metallic nanotubes with vacancies exhibit ferro- or ferrimagnetism, whereas some semiconducting nanotubes with vacancies show an antiferromagnetic order. The magnetic properties depend on chiralities of the tubes, the configuration of the vacancy and the concentration of the vacancies.

361 citations

Journal ArticleDOI
TL;DR: The elastic, electronic, and optical properties of the 2D graphyne sheet, which consists of hexagonal carbon rings and acetylenic linkages, are investigated from first-principles calculations as discussed by the authors.
Abstract: The elastic, electronic, and optical properties of the 2D graphyne sheet, which consists of hexagonal carbon rings and acetylenic linkages, are investigated from first-principles calculations. Graphyne has a Poisson’s ratio of 0.417 and an in-plane stiffness of 10.36 eV/A2. Compared with graphene, graphyne is much softer because of its relatively smaller number of bonds. The band structure of graphyne is calculated using both generalized gradient approximation and hybrid functional, and the band gap predicted by the latter is twice as much as that given by the former. It is also shown that the energy bands of graphyne can be divided into several regions according to bonding character. The optical property of graphyne is found to be strongly anisotropic. For electric field parallel to the graphyne plane, strong optical adsorption is observed in low-energy region, whereas for the electric field perpendicular to the graphyne plane, the adsorption in the low-energy region is very weak. What’s more, the respon...

361 citations

Journal ArticleDOI
TL;DR: In this paper, an accelerated ab initio molecular dynamics (MD) approach integrated with a machine learning framework is proposed, which learns from previously visited configurations in a continuous and adaptive manner on-the-fly, and predicts (with chemical accuracy) the energies and atomic forces of a new configuration at a minuscule fraction of the time taken by conventional AB initio methods.
Abstract: Quantum mechanics-based ab initio molecular dynamics (MD) simulation schemes offer an accurate and direct means to monitor the time evolution of materials. Nevertheless, the expensive and repetitive energy and force computations required in such simulations lead to significant bottlenecks. Here, we lay the foundations for an accelerated ab initio MD approach integrated with a machine learning framework. The proposed algorithm learns from previously visited configurations in a continuous and adaptive manner on-the-fly, and predicts (with chemical accuracy) the energies and atomic forces of a new configuration at a minuscule fraction of the time taken by conventional ab initio methods. Key elements of this new accelerated ab initio MD paradigm include representations of atomic configurations by numerical fingerprints, a learning algorithm to map the fingerprints to the properties, a decision engine that guides the choice of the prediction scheme, and requisite amount of ab initio data. The performance of each aspect of the proposed scheme is critically evaluated for Al in several different chemical environments. This work has enormous implications beyond ab initio MD acceleration. It can also lead to accelerated structure and property prediction schemes, and accurate force fields. V C 2014 Wiley Periodicals, Inc.

359 citations

Journal ArticleDOI
TL;DR: In this article, a hierarchical theory was proposed to predict critical twinning stress in face-centered cubic metals without any empiricism at any length scale, and the theory predicts a monotonic relation between the unstable twin stacking fault energy and twin nucleation stress revealing the physics of twinning.

359 citations

Journal ArticleDOI
01 Jan 2019-Nature
TL;DR: Atomically dispersed iron hydroxide deposited on silica-supported platinum nanoparticles enables complete and selective carbon monoxide removal through preferential oxidation in hydrogen in the temperature range from 198 to 380 kelvin.
Abstract: Proton-exchange-membrane fuel cells (PEMFCs) are attractive next-generation power sources for use in vehicles and other applications1, with development efforts focusing on improving the catalyst system of the fuel cell. One problem is catalyst poisoning by impurity gases such as carbon monoxide (CO), which typically comprises about one per cent of hydrogen fuel2-4. A possible solution is on-board hydrogen purification, which involves preferential oxidation of CO in hydrogen (PROX)3-7. However, this approach is challenging8-15 because the catalyst needs to be active and selective towards CO oxidation over a broad range of low temperatures so that CO is efficiently removed (to below 50 parts per million) during continuous PEMFC operation (at about 353 kelvin) and, in the case of automotive fuel cells, during frequent cold-start periods. Here we show that atomically dispersed iron hydroxide, selectively deposited on silica-supported platinum (Pt) nanoparticles, enables complete and 100 per cent selective CO removal through the PROX reaction over the broad temperature range of 198 to 380 kelvin. We find that the mass-specific activity of this system is about 30 times higher than that of more conventional catalysts consisting of Pt on iron oxide supports. In situ X-ray absorption fine-structure measurements reveal that most of the iron hydroxide exists as Fe1(OH)x clusters anchored on the Pt nanoparticles, with density functional theory calculations indicating that Fe1(OH)x-Pt single interfacial sites can readily react with CO and facilitate oxygen activation. These findings suggest that in addition to strategies that target oxide-supported precious-metal nanoparticles or isolated metal atoms, the deposition of isolated transition-metal complexes offers new ways of designing highly active metal catalysts.

358 citations

References
More filters
Book
31 Dec 1993
TL;DR: The linearized augmented planewave (LAPW) method has emerged as the standard by which density functional calculations for transition metal and rare-earth containing materials are judged.
Abstract: With its extreme accuracy and reasonable computational efficiency, the linearized augmented planewave (LAPW) method has emerged as the standard by which density functional calculations for transition metal and rare-earth containing materials are judged. This volume presents a thorough and self-conta

1,150 citations