scispace - formally typeset
Search or ask a question
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

15 Jan 1999-Physical Review B (American Physical Society)-Vol. 59, Iss: 3, pp 1758-1775
TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Abstract: The formal relationship between ultrasoft (US) Vanderbilt-type pseudopotentials and Bl\"ochl's projector augmented wave (PAW) method is derived. It is shown that the total energy functional for US pseudopotentials can be obtained by linearization of two terms in a slightly modified PAW total energy functional. The Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional. A simple way to implement the PAW method in existing plane-wave codes supporting US pseudopotentials is pointed out. In addition, critical tests are presented to compare the accuracy and efficiency of the PAW and the US pseudopotential method with relaxed core all electron methods. These tests include small molecules $({\mathrm{H}}_{2}{,\mathrm{}\mathrm{H}}_{2}{\mathrm{O},\mathrm{}\mathrm{Li}}_{2}{,\mathrm{}\mathrm{N}}_{2}{,\mathrm{}\mathrm{F}}_{2}{,\mathrm{}\mathrm{BF}}_{3}{,\mathrm{}\mathrm{SiF}}_{4})$ and several bulk systems (diamond, Si, V, Li, Ca, ${\mathrm{CaF}}_{2},$ Fe, Co, Ni). Particular attention is paid to the bulk properties and magnetic energies of Fe, Co, and Ni.
Citations
More filters
Journal ArticleDOI
TL;DR: It is demonstrated experimentally for the first time that two-dimensional atomically thin PtSe2 has a variable bandgap in the mid-infrared via layer and defect engineering and this results pave the way foratomically thin 2D noble metal dichalcogenides to be employed in high-performance mid- Infrared optoelectronic devices.
Abstract: The interest in mid-infrared technologies surrounds plenty of important optoelectronic applications ranging from optical communications, biomedical imaging to night vision cameras, and so on. Although narrow bandgap semiconductors, such as Mercury Cadmium Telluride and Indium Antimonide, and quantum superlattices based on inter-subband transitions in wide bandgap semiconductors, have been employed for mid-infrared applications, it remains a daunting challenge to search for other materials that possess suitable bandgaps in this wavelength range. Here, we demonstrate experimentally for the first time that two-dimensional (2D) atomically thin PtSe2 has a variable bandgap in the mid-infrared via layer and defect engineering. Here, we show that bilayer PtSe2 combined with defects modulation possesses strong light absorption in the mid-infrared region, and we realize a mid-infrared photoconductive detector operating in a broadband mid-infrared range. Our results pave the way for atomically thin 2D noble metal dichalcogenides to be employed in high-performance mid-infrared optoelectronic devices.

344 citations

Journal ArticleDOI
05 Jun 2019-Nature
TL;DR: It is found that freestanding BiFeO3 films exhibit unexpected and giant tetragonality and polarization when approaching the 2D limit, and the absence of a critical thickness for stabilizing the crystalline order in thefreestanding ultrathin oxide films is demonstrated.
Abstract: Two-dimensional (2D) materials such as graphene and transition-metal dichalcogenides reveal the electronic phases that emerge when a bulk crystal is reduced to a monolayer1-4. Transition-metal oxide perovskites host a variety of correlated electronic phases5-12, so similar behaviour in monolayer materials based on transition-metal oxide perovskites would open the door to a rich spectrum of exotic 2D correlated phases that have not yet been explored. Here we report the fabrication of freestanding perovskite films with high crystalline quality almost down to a single unit cell. Using a recently developed method based on water-soluble Sr3Al2O6 as the sacrificial buffer layer13,14 we synthesize freestanding SrTiO3 and BiFeO3 ultrathin films by reactive molecular beam epitaxy and transfer them to diverse substrates, in particular crystalline silicon wafers and holey carbon films. We find that freestanding BiFeO3 films exhibit unexpected and giant tetragonality and polarization when approaching the 2D limit. Our results demonstrate the absence of a critical thickness for stabilizing the crystalline order in the freestanding ultrathin oxide films. The ability to synthesize and transfer crystalline freestanding perovskite films without any thickness limitation onto any desired substrate creates opportunities for research into 2D correlated phases and interfacial phenomena that have not previously been technically possible.

344 citations

Journal ArticleDOI
TL;DR: This work presents a uniform method for synthesizing pure and bimetallic DENs and demonstrates that their catalytic properties are dependent on the adsorbate’s binding energy.
Abstract: We demonstrate that the reduction of p-nitrophenol to p-aminophenol by NaBH4 is catalyzed by both monometallic and bimetallic nanoparticles (NPs). We also demonstrate a straightforward and precise method for the synthesis of bimetallic nanoparticles using poly(amido)amine dendrimers. The resulting dendrimer encapsulated nanoparticles (DENs) are monodisperse, and the size distribution does not vary with different elemental combinations. Random alloys of Pt/Cu, Pd/Cu, Pd/Au, Pt/Au, and Au/Cu DENs were synthesized and evaluated as catalysts for p-nitrophenol reduction. These combinations are chosen in order to selectively tune the binding energy of the p-nitrophenol adsorbate to the nanoparticle surface. Following the Bronsted-Evans-Polanyi (BEP) relation, we show that the binding energy can reasonably predict the reaction rates of p-nitrophenol reduction. We demonstrate that the measured reaction rate constants of the bimetallic DENs is not always a simple average of the properties of the constituent metals. In particular, DENs containing metals with similar lattice constants produce a binding energy close to the average of the two constituents, whereas DENs containing metals with a lattice mismatch show a bimodal distribution of binding energies. Overall, in this work we present a uniform method for synthesizing pure and bimetallic DENs and demonstrate that their catalytic properties are dependent on the adsorbate's binding energy.

343 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigate the adsorption of Na and Ca on graphene with divacancy and Stone-Wales defects in graphene and find that the capacity of graphene increases with the density of the defects.
Abstract: Because of their abundance, sodium and calcium can be attractive in ion batteries for large-scale grid storage. However, many of the anode materials being pursued have limitations including volume expansion, lack of passivating films, and slow kinetics. Here, we investigate the adsorption of Na and Ca on graphene with divacancy and Stone–Wales defects in graphene. Our results show that although adsorption of Na and Ca is not possible on pristine graphene, enhanced adsorption is observed on defective graphene because of increased charge transfer between the adatoms and defects. We find that the capacity of graphene increases with the density of the defects. For the maximum possible divacancy defect densities, capacities of 1450 and 2900 mAh/g for Na- and Ca-ion batteries, respectively, can be achieved. For Stone–Wales defects, we find maximum capacities of 1071 and 2142 mAh/g for Na and Ca, respectively. Our results provide guidelines to create better high-capacity anode materials for Na- and Ca-ion batteries.

343 citations

Journal ArticleDOI
TL;DR: It is found that the simple reaction-dissociation of O2-supported on metal surfaces can profoundly account for the oxidase-like activities of the metals and pave a way to the rational design of mimetic enzymes based on metal nanomaterials.
Abstract: Metal and alloy nanomaterials have intriguing oxidase- and superoxide dismutation-like (SOD-like) activities. However, origins of these activities remain to be studied. Using density functional theory (DFT) calculations, we investigate mechanisms of oxidase- and SOD-like properties for metals Au, Ag, Pd and Pt and alloys Au4–xMx (x = 1, 2, 3; M = Ag, Pd, Pt). We find that the simple reaction—dissociation of O2—supported on metal surfaces can profoundly account for the oxidase-like activities of the metals. The activation (Eact) and reaction energies (Er) calculated by DFT can be used to effectively predict the activity. As verification, the calculated activity orders for series of metal and alloy nanomaterials are in excellent agreement with those obtained by experiments. Briefly, the activity is critically dependent on two factors, metal compositions and exposed facets. On the basis of these results, an energy-based model is proposed to account for the activation of molecular oxygen. As for SOD-like acti...

343 citations

References
More filters
Book
31 Dec 1993
TL;DR: The linearized augmented planewave (LAPW) method has emerged as the standard by which density functional calculations for transition metal and rare-earth containing materials are judged.
Abstract: With its extreme accuracy and reasonable computational efficiency, the linearized augmented planewave (LAPW) method has emerged as the standard by which density functional calculations for transition metal and rare-earth containing materials are judged. This volume presents a thorough and self-conta

1,150 citations