scispace - formally typeset
Journal ArticleDOI

From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯F–Y systems

Enrique Espinosa, +3 more
- 04 Sep 2002 - 
- Vol. 117, Iss: 12, pp 5529-5542
Reads0
Chats0
TLDR
In this paper, the topological and energetic properties of the electron density distribution ρ(r) of isolated pairwise H⋯F interaction have been theoretically calculated at several geometries and represented against the corresponding internuclear distances.
Abstract
The topological and energetic properties of the electron density distribution ρ(r) of the isolated pairwise H⋯F interaction have been theoretically calculated at several geometries (0.8<d<2.5 A) and represented against the corresponding internuclear distances. From long to short geometries, the results presented here lead to three characteristic regions, which correspond to three different interaction states. While the extreme regions are associated to pure closed-shell (CS) and shared-shell (SS) interactions, the middle one has been related to the redistribution of ρ(r) between those electronic states. The analysis carried out with this system has permitted to associate the transit region between pure CS and SS interactions to internuclear geometries involved in the building of the H–F bonding molecular orbital. A comparative analysis between the formation of this orbital and the behavior of some characteristic ρ(r) properties has indicated their intrinsic correspondence, leading to the definition of a bond degree parameter [BD=HCP/ρCP; HCP and ρCP being the total electron energy density and the electron density value at the H⋯F (3,−1) critical point]. Along with the isolated pairwise H⋯F interaction, 79 X–H⋯F–Y (neutral, positively and negatively charged) complexes have been also theoretically considered and analyzed in terms of relevant topological and energetic properties of ρ(r) found at their H⋯F critical points. In particular, the interaction energies of X–H⋯F–Y pure CS interactions have been estimated by using the bond degree parameter. On the other hand, the [F⋯H⋯F]− proton transfer geometry has been related to the local maximum of the electron kinetic energy density (GCP)max.

read more

Citations
More filters
Journal ArticleDOI

Exploring Nature and Predicting Strength of Hydrogen Bonds: A Correlation Analysis Between Atoms-in-Molecules Descriptors, Binding Energies, and Energy Components of Symmetry-Adapted Perturbation Theory.

TL;DR: A fairly satisfactory correlation was found for the electron density at the bond critical point (BCP; ρBCP) of HBs, and a new and rigorous classification of H‐bonds (HBs) is proposed based on the SAPT decomposition.
Journal ArticleDOI

Tetrel bond–σ-hole bond as a preliminary stage of the SN2 reaction

TL;DR: Calculations were carried out on complexes of ZH4, ZFH3 and ZF4 (Z = C, Si and Ge) molecules with HCN, LiCN and Cl(-) species acting as Lewis bases through nitrogen centre or chlorine ion, finding the electron charge redistribution is the same as that of the SN2 reaction.
Journal ArticleDOI

Molecular recognition in organic crystals : Directed intermolecular bonds or nonlocalized bonding?

TL;DR: In this article, the authors compare interpretations based on the extension of Bader's atoms in molecules (AIM) theory to cover closed-shell intermolecular interactions with interpretation based on a new pixel method for the calculation of coulombic, polarization, dispersion, and repulsion energies from the electron density of molecular clusters.
Journal ArticleDOI

The nature of halogen...halogen interactions: a model derived from experimental charge-density analysis.

TL;DR: The attractive and anisotropic nature of the ClCl interaction in C(6)Cl( 6) is experimentally demonstrated from an expansion of the electron density rho(r) around the chlorine nuclei.
Journal ArticleDOI

Bader’s Theory of Atoms in Molecules (AIM) and its Applications to Chemical Bonding

TL;DR: In this paper, the basic theory and applications of the Quantum Theory of Atoms in Molecules have been presented with examples from different categories of weak and hydrogen-bonded molecular systems.
References
More filters
Journal ArticleDOI

General atomic and molecular electronic structure system

TL;DR: A description of the ab initio quantum chemistry package GAMESS, which can be treated with wave functions ranging from the simplest closed‐shell case up to a general MCSCF case, permitting calculations at the necessary level of sophistication.
Journal ArticleDOI

Note on an Approximation Treatment for Many-Electron Systems

Chr. Møller, +1 more
- 01 Oct 1934 - 
TL;DR: In this article, a perturbation theory for treating a system of n electrons in which the Hartree-Fock solution appears as the zero-order approximation was developed, and it was shown by this development that the first order correction for the energy and the charge density of the system is zero.
Book

Atoms in molecules : a quantum theory

TL;DR: In this article, the quantum atom and the topology of the charge desnity of a quantum atom are discussed, as well as the mechanics of an atom in a molecule.
Journal ArticleDOI

Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets

TL;DR: In this paper, a modified basis set of supplementary diffuse s and p functions, multiple polarization functions (double and triple sets of d functions), and higher angular momentum polarization functions were defined for use with the 6.31G and 6.311G basis sets.
Related Papers (5)