scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Full 2-D photonic bandgaps in silica/air structures

26 Oct 1995-Electronics Letters (IET)-Vol. 31, Iss: 22, pp 1941-1943
TL;DR: In this paper, full 2D photonic bandgaps are demonstrated for all polarisations in structures with refractive index contrast as small as that of silica and air, and a new type of optical fiber based on these structures is proposed.
Abstract: Full 2-D photonic bandgaps are demonstrated for all polarisations in structures with refractive index contrast as small as that of silica and air. They occur for light propagating out of the transverse plane, with a longitudinal component of wave vector. A new type of optical fibre based on these structures is proposed.

Content maybe subject to copyright    Report






Citations
More filters
Journal ArticleDOI
17 Jan 2003-Science
TL;DR: In this article, a periodic array of microscopic air holes that run along the entire fiber length are used to guide light by corralling it within a periodic arrays of microscopic holes.
Abstract: Photonic crystal fibers guide light by corralling it within a periodic array of microscopic air holes that run along the entire fiber length Largely through their ability to overcome the limitations of conventional fiber optics—for example, by permitting low-loss guidance of light in a hollow core—these fibers are proving to have a multitude of important technological and scientific applications spanning many disciplines The result has been a renaissance of interest in optical fibers and their uses

3,918 citations

Journal ArticleDOI
TL;DR: The fabrication of a new type of optical waveguide: the photonic crystal fiber that supports a single robust low-loss guided mode over a very broad spectral range of at least 458-1550 nm.
Abstract: We report the fabrication of a new type of optical waveguide: the photonic crystal fiber. It consists of a pure silica core surrounded by a silica-air photonic crystal material with a hexagonal symmetry. The fiber supports a single robust low-loss guided mode over a very broad spectral range of at least 458-1550 nm. Also see errata - http://eprints.soton.ac.uk/78010/

2,991 citations

Journal ArticleDOI
TL;DR: An effective-index model confirms that an all-silica optical fiber made by embedding a central core in a two-dimensional photonic crystal with a micrometer-spaced hexagonal array of air holes can be single mode for any wavelength.
Abstract: We made an all-silica optical fiber by embedding a central core in a two-dimensional photonic crystal with a micrometer-spaced hexagonal array of air holes. An effective-index model confirms that such a fiber can be single mode for any wavelength. Its useful single-mode range within the transparency window of silica, although wide, is ultimately bounded by a bend-loss edge at short wavelengths as well as at long wavelengths.

2,905 citations

Journal ArticleDOI
03 Sep 1999-Science
TL;DR: The confinement of light within a hollow core (a large air hole) in a silica-air photonic crystal fiber is demonstrated and certain wavelength bands are confined and guided down the fiber.
Abstract: The confinement of light within a hollow core (a large air hole) in a silica-air photonic crystal fiber is demonstrated Only certain wavelength bands are confined and guided down the fiber, each band corresponding to the presence of a full two-dimensional band gap in the photonic crystal cladding Single-mode vacuum waveguides have a multitude of potential applications from ultrahigh-power transmission to the guiding of cold atoms

1,935 citations

Journal ArticleDOI
TL;DR: The history, fabrication, theory, numerical modeling, optical properties, guidance mechanisms, and applications of photonic-crystal fibers are reviewed.
Abstract: The history, fabrication, theory, numerical modeling, optical properties, guidance mechanisms, and applications of photonic-crystal fibers are reviewed

1,488 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the photonic band gap structures, those three-dimensional periodic dielectric structures that are to photon waves as semiconductor crystals are to electron waves, are discussed.
Abstract: The analogy between electromagnetic wave propagation in multidimensionally periodic structures and electron-wave propagation in real crystals has proven to be a fruitful one. Initial efforts were motivated by the prospect of a photonic band gap. a frequency band in three-dimensional dielectric structures in which electromagnetic waves are forbidden irrespective of the propagation direction in space. Today many new ideas and applications are being pursued in two and three dimensions and in metallic, dielectric, and acoustic structures. We review the early motivations for this research, which were derived from the need for a photonic band gap in quantum optics. This need led to a series of experimental and theoretical searches for the elusive photonic band-gap structures, those three-dimensionally periodic dielectric structures that are to photon waves as semiconductor crystals are to electron waves. We describe how the photonic semiconductor can be doped, producing tiny electromagnetic cavities. Finally, we summarize some of the anticipated implications of photonic band structure for quantum electronics and for other areas of physics and electrical engineering.

1,352 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe in detail how to make numerical calculations of the dispersion relations (the band structure) of these complex objects, and how to calculate transmission through, and reflection from them.
Abstract: Building complex materials with structures on a scale comparable to the wavelength of light offers possibilities for radically changing the way light moves around such materials, in the same way that we engineer atomic structure to vary electronic properties of semiconductors. In this paper we describe in detail how to make numerical calculations of the dispersion relations (the band structure) of these complex objects, and how to calculate transmission through, and reflection from them. Finally these methodologies are applied to a colloidal dispersion of metallic particles at 12% volume filling fraction to reproduce the well known characteristics of strong optical absorption.

457 citations

Journal ArticleDOI
30 Oct 1992-Science
TL;DR: In this paper, the fabrication and characterization of a glass containing a regular parallel array of submicrometer channels or capillaries is described, arranged in a two-dimensional hexagonal close packing configuration with channel diameters as small as 33 nanometers and packing densities as high as 3 x 10(10) channels per square centimeter.
Abstract: The fabrication and characterization of a glass containing a regular parallel array of submicrometer channels or capillaries are described. The capillaries are arranged in a two-dimensional hexagonal close packing configuration with channel diameters as small as 33 nanometers and packing densities as high as 3 x 10(10) channels per square centimeter. The high-temperature stability of the nanochannel glass array is well suited as a host or template for the formation of quantum confined semiconductor structures or as a mask for massively parallel patterned lithographic applications.

334 citations

Journal ArticleDOI
TL;DR: Two-dimensional square and hexagonal lattices exhibit photonic band gaps common to s- and p-polarized waves but do not give rise to band gaps even when asymmetry is introduced to lift the degeneracies.
Abstract: Two-dimensional square and hexagonal lattices exhibit photonic band gaps common to s- and p-polarized waves. These gaps occur from an overlap of the gaps between the first and second p bands and higher s bands. A dielectric structure with a hexagonal lattice of air holes requires a lower index contrast to generate a band gap and gives rise to larger gaps than a square lattice. Furthermore, square and hexagonal lattices of dielectric rods in air do not give rise to band gaps even when asymmetry is introduced to lift the degeneracies.

248 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the use of a tapered single mode optical fiber as an optimised system to act as an evanescent wave absorption sensor, with a calcium detection scheme as a model system.

17 citations