scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Full-view in vivo skin and blood vessels profile segmentation in photoacoustic imaging based on deep learning.

TL;DR: Wang et al. as discussed by the authors proposed a DL model based on modified U-Net for extracting the relationship features between amplitudes of the generated photoacoustic signal from skin and underlying vessels.
About: This article is published in Photoacoustics.The article was published on 2022-03-01 and is currently open access. It has received 11 citations till now. The article focuses on the topics: Segmentation & Photoacoustic imaging in biomedicine.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , a deep learning-based approach to semantic segmentation of multispectral photoacoustic images is presented to facilitate image interpretability in clinical translation of high-dimensional acquired data into clinically relevant and interpretable information.

8 citations

Journal ArticleDOI
TL;DR: This review evaluates the state of the art of machine learning applied to electron microscopy (and obliquely, to materials and nano-sciences), and explores the state-of-the-art of other disciplines with a broader experience in applying artificial intelligence methods to their research.
Abstract: In the last few years, electron microscopy has experienced a new methodological paradigm aimed to fix the bottlenecks and overcome the challenges of its analytical workflow. Machine learning and artificial intelligence are answering this call providing powerful resources towards automation, exploration, and development. In this review, we evaluate the state-of-the-art of machine learning applied to electron microscopy (and obliquely, to materials and nano-sciences). We start from the traditional imaging techniques to reach the newest higher-dimensionality ones, also covering the recent advances in spectroscopy and tomography. Additionally, the present review provides a practical guide for microscopists, and in general for material scientists, but not necessarily advanced machine learning practitioners, to straightforwardly apply the offered set of tools to their own research. To conclude, we explore the state-of-the-art of other disciplines with a broader experience in applying artificial intelligence methods to their research (e.g., high-energy physics, astronomy, Earth sciences, and even robotics, videogames, or marketing and finances), in order to narrow down the incoming future of electron microscopy, its challenges and outlook.

6 citations

Journal ArticleDOI
01 Jul 2022-Sensors
TL;DR: In this article , a review of photo-acoustic systems for the whole-body imaging of small animals is explored and summarized, and the future direction of research is also discussed with regard to achieving a deeper imaging depth and faster imaging speed.
Abstract: Photoacoustic imaging is a hybrid imaging technique that has received considerable attention in biomedical studies. In contrast to pure optical imaging techniques, photoacoustic imaging enables the visualization of optical absorption properties at deeper imaging depths. In preclinical small animal studies, photoacoustic imaging is widely used to visualize biodistribution at the molecular level. Monitoring the whole-body distribution of chromophores in small animals is a key method used in preclinical research, including drug-delivery monitoring, treatment assessment, contrast-enhanced tumor imaging, and gastrointestinal tracking. In this review, photoacoustic systems for the whole-body imaging of small animals are explored and summarized. The configurations of the systems vary with the scanning methods and geometries of the ultrasound transducers. The future direction of research is also discussed with regard to achieving a deeper imaging depth and faster imaging speed, which are the main factors that an imaging system should realize to broaden its application in biomedical studies.

6 citations

Journal ArticleDOI
TL;DR: In this paper , a comprehensive review of segmentation and quantitative methods that have been developed to process photo-acoustic imaging in preclinical and clinical experiments is presented, focusing on the parametric reliability of quantitative analysis for semantic and instance-level segmentation.
Abstract: Photoacoustic imaging is an emerging biomedical imaging technique that combines optical contrast and ultrasound resolution to create unprecedented light absorption contrast in deep tissue. Thanks to its fusional imaging advantages, photoacoustic imaging can provide multiple structural and functional insights into biological tissues such as blood vasculatures and tumors and monitor the kinetic movements of hemoglobin and lipids. To better visualize and analyze the regions of interest, segmentation and quantitative analyses were used to extract several biological factors, such as the intensity level changes, diameter, and tortuosity of the tissues. Over the past 10 years, classical segmentation methods and advances in deep learning approaches have been utilized in research investigations. In this review, we provide a comprehensive review of segmentation and quantitative methods that have been developed to process photoacoustic imaging in preclinical and clinical experiments. We focus on the parametric reliability of quantitative analysis for semantic and instance-level segmentation. We also introduce the similarities and alternatives of deep learning models in qualitative measurements using classical segmentation methods for photoacoustic imaging.

3 citations

Journal ArticleDOI
TL;DR: The proposed model involves two distinct kinds of vessel segmentation approaches such as Shannon's entropy function (SEF) and multilevel Otsu thresholding (MLOT) and is optimized using three metaheuristics such as the cuckoo search (CS), equilibrium optimizer (EO), and harmony search (HS) algorithms.
Abstract: Biomedical imaging technologies are designed to offer functional, anatomical, and molecular details related to the internal organs. Photoacoustic imaging (PAI) is becoming familiar among researchers and industrialists. The PAI is found useful in several applications of brain and cancer imaging such as prostate cancer, breast cancer, and ovarian cancer. At the same time, the vessel images hold important medical details which offer strategies for a qualified diagnosis. Recently developed image processing techniques can be employed to segment vessels. Since vessel segmentation on PAI is a difficult process, this paper employs metaheuristic optimization-based vascular segmentation techniques for PAI. The proposed model involves two distinct kinds of vessel segmentation approaches such as Shannon's entropy function (SEF) and multilevel Otsu thresholding (MLOT). Moreover, the threshold value and entropy function in the segmentation process are optimized using three metaheuristics such as the cuckoo search (CS), equilibrium optimizer (EO), and harmony search (HS) algorithms. A detailed experimental analysis is made on benchmark PAI dataset, and the results are inspected under varying aspects. The obtained results pointed out the supremacy of the presented model with a higher accuracy of 98.71%.

3 citations

References
More filters
Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Book ChapterDOI
05 Oct 2015
TL;DR: Neber et al. as discussed by the authors proposed a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently, which can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks.
Abstract: There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net .

49,590 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: The key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning.
Abstract: Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet [20], the VGG net [31], and GoogLeNet [32]) into fully convolutional networks and transfer their learned representations by fine-tuning [3] to the segmentation task. We then define a skip architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional network achieves state-of-the-art segmentation of PASCAL VOC (20% relative improvement to 62.2% mean IU on 2012), NYUDv2, and SIFT Flow, while inference takes less than one fifth of a second for a typical image.

28,225 citations

Posted Content
TL;DR: In this article, the adaptive estimates of lower-order moments are used for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimate of lowerorder moments.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

23,486 citations